論文の概要: A Non-Classical Parameterization for Density Estimation Using Sample
Moments
- arxiv url: http://arxiv.org/abs/2201.04786v1
- Date: Thu, 13 Jan 2022 04:28:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-14 14:00:04.011777
- Title: A Non-Classical Parameterization for Density Estimation Using Sample
Moments
- Title(参考訳): サンプルモーメントを用いた密度推定のための非古典的パラメータ化
- Authors: Guangyu Wu, Anders Lindquist
- Abstract要約: サンプルモーメントを用いた密度推定のための古典的でないパラメータ化を提案する。
マルチモーダル密度を推定する際の推定器の性能について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Moment methods are an important means of density estimation, but they are
generally strongly dependent on the choice of feasible functions, which
severely affects the performance. We propose a non-classical parameterization
for density estimation using the sample moments, which does not require the
choice of such functions. The parameterization is induced by the
Kullback-Leibler distance, and the solution of it, which is proved to exist and
be unique subject to simple prior that does not depend on data, can be obtained
by convex optimization. Simulation results show the performance of the proposed
estimator in estimating multi-modal densities which are mixtures of different
types of functions.
- Abstract(参考訳): モーメント法は、密度推定の重要な手段であるが、それらは一般に、性能に大きく影響する、実現可能な関数の選択に強く依存している。
このような関数の選択を必要としないサンプルモーメントを用いた密度推定のための非古典的パラメータ化を提案する。
パラメータ化はKullback-Leibler距離によって誘導され、その解は、存在することが証明され、データに依存しない単純な先行対象であり、凸最適化によって得られる。
シミュレーションの結果,異なる種類の関数の混合である多モード密度の推定における推定器の性能を示す。
関連論文リスト
- A quasi-Bayesian sequential approach to deconvolution density estimation [7.10052009802944]
密度デコンボリューションは、データからランダム信号の未知の密度関数$f$を推定する。
我々は、ノイズの多いデータが徐々に到着するストリーミングやオンライン環境での密度デコンボリューションの問題を考察する。
準ベイズ的シーケンシャルアプローチを頼りにすると、容易に評価できる$f$の推定値が得られる。
論文 参考訳(メタデータ) (2024-08-26T16:40:04Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
本研究では,ソボレフ法則の正則化に基づく非パラメトリック密度推定法を提案する。
この方法は統計的に一貫したものであり、帰納的検証モデルを明確かつ一貫したものにしている。
論文 参考訳(メタデータ) (2023-07-25T18:47:53Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
Estimation [4.014524824655106]
MESSY推定は最大エントロピーに基づくグラディエントおよびシンボリックデンシット推定法である。
本研究では,未知分布関数のサンプルを推定記号表現に接続する勾配に基づくドリフト拡散過程を構築する。
基本関数の記号探索を追加することで, 推定精度を合理的な計算コストで向上することがわかった。
論文 参考訳(メタデータ) (2023-06-07T03:28:47Z) - Anomaly Detection with Variance Stabilized Density Estimation [49.46356430493534]
本稿では, 観測試料の確率を最大化するための分散安定化密度推定問題を提案する。
信頼性の高い異常検知器を得るために,分散安定化分布を学習するための自己回帰モデルのスペクトルアンサンブルを導入する。
我々は52のデータセットで広範なベンチマークを行い、我々の手法が最先端の結果につながることを示した。
論文 参考訳(メタデータ) (2023-06-01T11:52:58Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Tensor-Train Density Estimation [16.414910030716555]
密度推定(TTDE)のための高効率テンソルトレインモデルを提案する。
このような密度パラメトリゼーションは、正確なサンプリング、累積および限界密度関数の計算、および分割関数を可能にする。
TTDEは,トレーニング速度において競技者よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-07-30T21:51:12Z) - Efficient Interpolation of Density Estimators [23.154249845820306]
未知の密度を近似する非パラメトリック推定器の空間的および時間的効率評価の問題について検討する。
本結果は,基礎となる滑らかさの存在下でのカーネル密度推定器の高速評価に関する新しい統計的視点を与えるものである。
論文 参考訳(メタデータ) (2020-11-10T06:05:00Z) - Low-rank Characteristic Tensor Density Estimation Part I: Foundations [38.05393186002834]
テンソル因子化ツールに基づく新しい手法を提案する。
次元の呪いを回避するため、この特性テンソルの低ランクモデルを導入する。
提案手法の有望な性能を,複数の測定データを用いて実証する。
論文 参考訳(メタデータ) (2020-08-27T18:06:19Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。