論文の概要: Efficient Interpolation of Density Estimators
- arxiv url: http://arxiv.org/abs/2011.04922v1
- Date: Tue, 10 Nov 2020 06:05:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 07:15:15.036951
- Title: Efficient Interpolation of Density Estimators
- Title(参考訳): 密度推定器の効率的な補間
- Authors: Paxton Turner, Jingbo Liu, and Philippe Rigollet
- Abstract要約: 未知の密度を近似する非パラメトリック推定器の空間的および時間的効率評価の問題について検討する。
本結果は,基礎となる滑らかさの存在下でのカーネル密度推定器の高速評価に関する新しい統計的視点を与えるものである。
- 参考スコア(独自算出の注目度): 23.154249845820306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of space and time efficient evaluation of a
nonparametric estimator that approximates an unknown density. In the regime
where consistent estimation is possible, we use a piecewise multivariate
polynomial interpolation scheme to give a computationally efficient
construction that converts the original estimator to a new estimator that can
be queried efficiently and has low space requirements, all without adversely
deteriorating the original approximation quality. Our result gives a new
statistical perspective on the problem of fast evaluation of kernel density
estimators in the presence of underlying smoothness. As a corollary, we give a
succinct derivation of a classical result of Kolmogorov---Tikhomirov on the
metric entropy of H\"{o}lder classes of smooth functions.
- Abstract(参考訳): 未知の密度を近似する非パラメトリック推定器の空間的および時間的効率評価の問題について検討する。
一貫した推定が可能なシステムでは、分数的に多変量多項式補間スキームを用いて、元の推定器を効率よく、空間要求の少ない新しい推定器に変換し、元の近似品質を悪用することなく、計算効率の良い構成を与える。
本結果は,基礎となる滑らかさの存在下でのカーネル密度推定器の高速評価に関する新しい統計的視点を与える。
corollary として、滑らかな函数の H\"{o}lder クラスの計量エントロピーについて、コルモゴロフ--チホミロフの古典的な結果の簡潔な導出を与える。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Statistical, Robustness, and Computational Guarantees for Sliced
Wasserstein Distances [18.9717974398864]
スライスされたワッサーシュタイン距離は古典的なワッサーシュタイン距離の性質を保ちながら、高次元での計算と推定によりスケーラブルである。
このスケーラビリティを, (i) 経験的収束率, (ii) データの汚染に対する堅牢性, (iii) 効率的な計算方法という3つの重要な側面から定量化する。
論文 参考訳(メタデータ) (2022-10-17T15:04:51Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
雑音線形測定から未知パラメータを推定するための分布的ロバストな推定フレームワークを提案する。
このような推定器の2乗誤差性能を解析する作業に着目する。
凸凹最適化問題の解法として2乗誤差を復元できることを示す。
論文 参考訳(メタデータ) (2022-06-27T13:02:59Z) - Semi-Supervised Quantile Estimation: Robust and Efficient Inference in
High Dimensional Settings [0.07031569227782805]
2つの利用可能なデータセットを特徴とする半教師付き環境での量子推定を考察する。
本稿では,2つのデータセットに基づいて,応答量子化(s)に対する半教師付き推定器群を提案する。
論文 参考訳(メタデータ) (2022-01-25T10:02:23Z) - A Non-Classical Parameterization for Density Estimation Using Sample
Moments [0.0]
サンプルモーメントを用いた密度推定のための非古典的パラメトリゼーションを提案する。
提案した推定器は、任意の偶数列までのパワーモーメントがサンプルモーメントと正確に一致する文献で最初のものである。
論文 参考訳(メタデータ) (2022-01-13T04:28:52Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - High-Dimensional Non-Parametric Density Estimation in Mixed Smooth
Sobolev Spaces [31.663702435594825]
密度推定は、機械学習、統計的推測、可視化において多くのタスクにおいて重要な役割を果たす。
高次元密度推定の主なボトルネックは計算コストの禁止と収束速度の低下である。
適応型双曲交叉密度推定器(Adaptive hyperbolic cross density estimator)と呼ばれる高次元非パラメトリック密度推定のための新しい推定器を提案する。
論文 参考訳(メタデータ) (2020-06-05T21:27:59Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。