Exploring Bosonic and Fermionic Link Models on $(3+1)-$d tubes
- URL: http://arxiv.org/abs/2201.07171v1
- Date: Tue, 18 Jan 2022 18:16:16 GMT
- Title: Exploring Bosonic and Fermionic Link Models on $(3+1)-$d tubes
- Authors: Debasish Banerjee, Emilie Huffman, Lukas Rammelm\"uller
- Abstract summary: Quantum link models (QLMs) have attracted a lot of attention in recent times as a generalization of Wilson's lattice gauge theories (LGT)
We study the Abelian $U(1)$ lattice gauge theory in $(2+1)$-d tubes using large-scale exact diagonalization (ED)
We introduce the first models involving fermionic quantum links, which generalize the gauge degrees of freedom to be of fermionic nature.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum link models (QLMs) have attracted a lot of attention in recent times
as a generalization of Wilson's lattice gauge theories (LGT), and are
particularly suitable for realization on quantum simulators and computers.
These models are known to host new phases of matter and act as a bridge between
particle and condensed matter physics. In this article, we study the Abelian
$U(1)$ lattice gauge theory in $(3+1)$-d tubes using large-scale exact
diagonalization (ED). We are then able to motivate the phase diagram of the
model with finite size scaling techniques (FSS), and in particular propose the
existence of a Coulomb phase. Furthermore, we introduce the first models
involving fermionic quantum links, which generalize the gauge degrees of
freedom to be of fermionic nature. We prove that while the spectra remain
identical between the bosonic and the fermionic versions of the
$U(1)$-symmetric quantum link models in $(2+1)$-d, they are different in
$(3+1)$-d. We discuss the prospects of realizing the magnetic field
interactions as correlated hopping in quantum simulator experiments.
Related papers
- Spin-$S$ $\mathrm{U}(1)$ Quantum Link Models with Dynamical Matter on a
Quantum Simulator [3.1192594881563127]
We present a bosonic mapping for the representation of gauge and electric fields with effective spin-$S$ operators.
We then propose an experimental scheme for the realization of a large-scale spin-$1$ $mathrmU(1)$ QLM using spinless bosons in an optical superlattice.
arXiv Detail & Related papers (2023-05-10T18:00:01Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Dynamical quantum phase transitions in spin-$S$ $\mathrm{U}(1)$ quantum
link models [0.0]
Dynamical quantum phase transitions (DQPTs) are a powerful concept of probing far-from-equilibrium criticality in quantum many-body systems.
We use infinite matrix product state techniques to study DQPTs in spin-$S$ $mathrmU(1)$ quantum link models.
Our findings indicate that DQPTs are fundamentally different between the Wilson--Kogut--Susskind limit and its representation through the quantum link formalism.
arXiv Detail & Related papers (2022-03-02T19:00:02Z) - Ground-state phase diagram of quantum link electrodynamics in $(2+1)$-d [0.0]
We study a lattice gauge theory where the gauge fields, represented by spin-$frac12$ operators are coupled to a single flavor of staggered fermions.
Using matrix product states on infinite cylinders with increasing diameter, we conjecture its phase diagram in $(2+1)$-d.
Our study reveals a rich phase diagram with exotic phases and interesting phase transitions to a potential liquid-like phase.
arXiv Detail & Related papers (2021-12-01T19:00:03Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.