論文の概要: Physics-informed neural networks for modeling rate- and
temperature-dependent plasticity
- arxiv url: http://arxiv.org/abs/2201.08363v1
- Date: Thu, 20 Jan 2022 18:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-21 15:16:55.411020
- Title: Physics-informed neural networks for modeling rate- and
temperature-dependent plasticity
- Title(参考訳): 物理インフォームドニューラルネットワークによる速度と温度に依存した塑性のモデリング
- Authors: Rajat Arora, Pratik Kakkar, Biswadip Dey, Amit Chakraborty
- Abstract要約: 本研究は, 弾性粘塑性固体の変形磁場のひずみ速度と温度依存性をモデル化する物理インフォームニューラルネットワークに基づく枠組みを提案する。
- 参考スコア(独自算出の注目度): 3.1861308132183384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a physics-informed neural network based framework to model
the strain-rate and temperature dependence of the deformation fields
(displacement, stress, plastic strain) in elastic-viscoplastic solids. A
detailed discussion on the construction of the physics-based loss criterion
along with a brief outline on ways to avoid unbalanced back-propagated
gradients during training is also presented. We also present a simple strategy
with no added computational complexity for choosing scalar weights that balance
the interplay between different terms in the composite loss. Moreover, we also
highlight a fundamental challenge involving selection of appropriate model
outputs so that the mechanical problem can be faithfully solved using neural
networks. Finally, the effectiveness of the proposed framework is demonstrated
by studying two test problems modeling the elastic-viscoplastic deformation in
solids at different strain-rates and temperatures, respectively.
- Abstract(参考訳): 本研究は, 弾性粘塑性固体中の変形場(変位, 応力, 塑性ひずみ)のひずみ速度および温度依存性をモデル化する物理インフォームニューラルネットワークに基づく枠組みを提案する。
物理学に基づく損失基準の構築に関する詳細な議論と、トレーニング中の不均衡なバックプロパゲーション勾配を避ける方法についての簡単な概要を紹介する。
また,複合損失における異なる用語間の相互作用のバランスをとるスカラー重みを選択するための計算複雑性を増すことなく,単純な戦略を提案する。
さらに,ニューラルネットワークを用いて機械的な問題を忠実に解くために,適切なモデル出力の選択に関する根本的な課題を浮き彫りにする。
最後に, ひずみ速度と温度の異なる固体の弾性粘塑性変形をモデル化する2つの試験問題について, 提案手法の有効性を実証した。
関連論文リスト
- Accounting for plasticity: An extension of inelastic Constitutive Artificial Neural Networks [0.0]
塑性の非弾性現象に対するiCANNの拡張と応用について述べる。
我々は4つのフィードフォワードネットワークとリカレントニューラルネットワークを併用して学習し、第2のPiola-Kirchhoffストレス測定をトレーニングに用いた。
負荷ケースの増加に対して,極めて正確な合意が得られながら,1つの負荷ケースでのトレーニングにすでに満足な結果が得られた。
論文 参考訳(メタデータ) (2024-07-27T19:19:42Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
提案したモデルアーキテクチャは、既存の文献のソリューションに比べてシンプルで効率的である。
この手法の検証はアームストロング・フレデリックのキネマティック・ハードニング・モデルを用いて得られたサロゲートデータを用いて行う。
論文 参考訳(メタデータ) (2024-03-04T07:09:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
弾性インバージョンのための新しいUNetベースニューラルネットワークモデル(El-UNet)を開発した。
完全接続された物理インフォームドニューラルネットワークと比較して,El-UNetによる精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T23:35:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture [11.252083314920108]
オートクレーブで治療を行うツール上で, 複合材料の熱化学的進化をシミュレートするPINNを提案する。
我々は、PDE、境界、インターフェース、初期条件に対応する損失項に自動的に重みを適応させる手法でPINNを訓練する。
提案したPINNの性能は材料厚と熱境界条件の異なる複数のシナリオで実証された。
論文 参考訳(メタデータ) (2020-11-27T00:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。