Denoising Architecture for Unsupervised Anomaly Detection in Time-Series
- URL: http://arxiv.org/abs/2208.14337v1
- Date: Tue, 30 Aug 2022 15:23:45 GMT
- Title: Denoising Architecture for Unsupervised Anomaly Detection in Time-Series
- Authors: Wadie Skaf and Tom\'a\v{s} Horv\'ath
- Abstract summary: We introduce the Denoising Architecture as a complement to this LSTM-Decoder model.
We demonstrate that the proposed architecture increases both the accuracy and the training speed, thereby, making the LSTM Autoencoder more efficient for unsupervised anomaly detection tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Anomalies in time-series provide insights of critical scenarios across a
range of industries, from banking and aerospace to information technology,
security, and medicine. However, identifying anomalies in time-series data is
particularly challenging due to the imprecise definition of anomalies, the
frequent absence of labels, and the enormously complex temporal correlations
present in such data. The LSTM Autoencoder is an Encoder-Decoder scheme for
Anomaly Detection based on Long Short Term Memory Networks that learns to
reconstruct time-series behavior and then uses reconstruction error to identify
abnormalities. We introduce the Denoising Architecture as a complement to this
LSTM Encoder-Decoder model and investigate its effect on real-world as well as
artificially generated datasets. We demonstrate that the proposed architecture
increases both the accuracy and the training speed, thereby, making the LSTM
Autoencoder more efficient for unsupervised anomaly detection tasks.
Related papers
- Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
Anomalies refer to data points or events that deviate from normal and homogeneous events.
This study presents a novel framework for time series anomaly detection using a combination of Bi-LSTM architecture and Autoencoder.
The Bi-LSTM Autoencoder model achieved a classification accuracy of 96.79% and outperformed more commonly used LSTM Autoencoder models.
arXiv Detail & Related papers (2023-03-17T00:24:28Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive
Coding for Multivariate Time-Series Anomaly Detection [3.772827533440353]
Real-world time-series data exhibit complex temporal dependencies.
RAE-M EPC learns informative normal representations based on multi-resolution ensemble and predictive coding.
Experiments on real-world benchmark datasets show that the proposed model outperforms the benchmark models.
arXiv Detail & Related papers (2022-02-21T05:47:22Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
We propose an unsupervised Attention-based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis.
The framework starts by pre-processing and enriching the data, before constructing feature images to characterize the system statuses.
The constructed feature images are fed into an attention-based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the temporal behavior.
The reconstruction errors are then computed and subjected to a statistical-based, dynamic thresholding mechanism to detect and diagnose the anomalies
arXiv Detail & Related papers (2022-01-23T04:01:43Z) - Memory-augmented Adversarial Autoencoders for Multivariate Time-series
Anomaly Detection with Deep Reconstruction and Prediction [4.033624665609417]
We propose MemAAE, a novel unsupervised anomaly detection method for time-series.
By jointly training two complementary proxy tasks, reconstruction and prediction, we show that detecting anomalies via multiple tasks obtains superior performance.
MemAAE achieves an overall F1 score of 0.90 on four public datasets, significantly outperforming the best baseline by 0.02.
arXiv Detail & Related papers (2021-10-15T18:29:05Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - RobustTAD: Robust Time Series Anomaly Detection via Decomposition and
Convolutional Neural Networks [37.16594704493679]
We propose RobustTAD, a Robust Time series Anomaly Detection framework.
It integrates robust seasonal-trend decomposition and convolutional neural network for time series data.
It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
arXiv Detail & Related papers (2020-02-21T20:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.