MeltpoolNet: Melt pool Characteristic Prediction in Metal Additive
Manufacturing Using Machine Learning
- URL: http://arxiv.org/abs/2201.11662v1
- Date: Wed, 26 Jan 2022 04:08:56 GMT
- Title: MeltpoolNet: Melt pool Characteristic Prediction in Metal Additive
Manufacturing Using Machine Learning
- Authors: Parand Akbari, Francis Ogoke, Ning-Yu Kao, Kazem Meidani, Chun-Yu Yeh,
William Lee, Amir Barati Farimani
- Abstract summary: Characterizing meltpool shape and geometry is essential in metal Additive Manufacturing (MAM) to control the printing process and avoid defects.
Machine learning (ML) techniques can be useful in connecting process parameters to the type of flaws in the meltpool.
In this work, we introduced a comprehensive framework for benchmarking ML for melt pool characterization.
- Score: 0.39577682622066257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Characterizing meltpool shape and geometry is essential in metal Additive
Manufacturing (MAM) to control the printing process and avoid defects.
Predicting meltpool flaws based on process parameters and powder material is
difficult due to the complex nature of MAM process. Machine learning (ML)
techniques can be useful in connecting process parameters to the type of flaws
in the meltpool. In this work, we introduced a comprehensive framework for
benchmarking ML for melt pool characterization. An extensive experimental
dataset has been collected from more than 80 MAM articles containing MAM
processing conditions, materials, meltpool dimensions, meltpool modes and flaw
types. We introduced physics-aware MAM featurization, versatile ML models, and
evaluation metrics to create a comprehensive learning framework for meltpool
defect and geometry prediction. This benchmark can serve as a basis for melt
pool control and process optimization. In addition, data-driven explicit models
have been identified to estimate meltpool geometry from process parameters and
material properties which outperform Rosenthal estimation for meltpool geometry
while maintaining interpretability.
Related papers
- Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability [12.425166883814153]
Digital twin (DT) using machine learning (ML)-based modeling can be deployed for AM process monitoring and control.
Melt pool is one of the most commonly observed physical phenomena for process monitoring.
This paper proposes a knowledge transfer pipeline between different AM settings to enhance the reusability of AM DTs.
arXiv Detail & Related papers (2024-09-19T13:54:01Z) - Integrating Multi-Physics Simulations and Machine Learning to Define the Spatter Mechanism and Process Window in Laser Powder Bed Fusion [6.024307115154315]
In this work, we investigate mechanism of spatter formation, using a high-fidelity modelling tool that was built to simulate the multi-physics phenomena in LPBF.
To understand spatter behavior and formation, we reveal its properties at ejection and evaluate its variation from the meltpool, the source where it is formed.
The relationship between the spatter and the meltpool were evaluated via correlation analysis and machine learning (ML) algorithms for classification tasks.
arXiv Detail & Related papers (2024-05-13T15:08:02Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
arXiv Detail & Related papers (2024-05-13T03:53:46Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - Large-scale gradient-based training of Mixtures of Factor Analyzers [67.21722742907981]
This article contributes both a theoretical analysis as well as a new method for efficient high-dimensional training by gradient descent.
We prove that MFA training and inference/sampling can be performed based on precision matrices, which does not require matrix inversions after training is completed.
Besides the theoretical analysis and matrices, we apply MFA to typical image datasets such as SVHN and MNIST, and demonstrate the ability to perform sample generation and outlier detection.
arXiv Detail & Related papers (2023-08-26T06:12:33Z) - A hybrid machine learning framework for clad characteristics prediction
in metal additive manufacturing [0.0]
Metal additive manufacturing (MAM) has experienced significant developments and gained much attention.
Predicting the impact of processing parameters on the characteristics of an MAM printed clad is challenging due to the complex nature of MAM processes.
Machine learning (ML) techniques can help connect the physics underlying the process and processing parameters to the clad characteristics.
arXiv Detail & Related papers (2023-07-04T18:32:41Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
arXiv Detail & Related papers (2023-02-08T07:37:51Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Machine learning based in situ quality estimation by molten pool
condition-quality relations modeling using experimental data [14.092644790436635]
We develop a machine learning convolutional neural network (CNN) model for establishing the correlations from the measurable molten pool image and temperature data.
The multi-modality network receives both the camera image and temperature measurement as inputs, yielding the corresponding characterization properties.
The developed models enable molten pool condition-quality relations mapping for building quantitative and collaborative in situ quality estimation and assurance framework.
arXiv Detail & Related papers (2021-03-21T15:57:05Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
We introduce the CoCoMoT (Computing Conformance Modulo Theories) framework.
First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering.
arXiv Detail & Related papers (2021-03-18T20:22:50Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.