論文の概要: Statistical anonymity: Quantifying reidentification risks without
reidentifying users
- arxiv url: http://arxiv.org/abs/2201.12306v1
- Date: Fri, 28 Jan 2022 18:12:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 14:33:27.937603
- Title: Statistical anonymity: Quantifying reidentification risks without
reidentifying users
- Title(参考訳): 統計的匿名性:ユーザーを再識別せずに再識別リスクを定量化する
- Authors: Gecia Bravo-Hermsdorff, Robert Busa-Fekete, Lee M. Gunderson, Andr\'es
Mun\~oz Medina, Umar Syed
- Abstract要約: データ匿名化は、参加者の再識別を防ぐためのプライバシ保護データリリースに対するアプローチである。
リリースされたデータに$k$匿名を強制するための既存のアルゴリズムは、匿名化を実行するキュレーターが元のデータに完全にアクセスできることを前提としている。
本稿では,キュレーターに置かれなければならない信頼を減らすためのアイデアについて検討するが,それでも$k$匿名性の統計的概念は維持されている。
- 参考スコア(独自算出の注目度): 4.103598036312231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data anonymization is an approach to privacy-preserving data release aimed at
preventing participants reidentification, and it is an important alternative to
differential privacy in applications that cannot tolerate noisy data. Existing
algorithms for enforcing $k$-anonymity in the released data assume that the
curator performing the anonymization has complete access to the original data.
Reasons for limiting this access range from undesirability to complete
infeasibility. This paper explores ideas -- objectives, metrics, protocols, and
extensions -- for reducing the trust that must be placed in the curator, while
still maintaining a statistical notion of $k$-anonymity. We suggest trust
(amount of information provided to the curator) and privacy (anonymity of the
participants) as the primary objectives of such a framework. We describe a
class of protocols aimed at achieving these goals, proposing new metrics of
privacy in the process, and proving related bounds. We conclude by discussing a
natural extension of this work that completely removes the need for a central
curator.
- Abstract(参考訳): データ匿名化は、参加者の再識別を防ぐためのプライバシ保護データリリースに対するアプローチであり、ノイズの多いデータを許容できないアプリケーションにおいて、差分プライバシーに対する重要な代替手段である。
リリースデータに$k$-匿名化を強制する既存のアルゴリズムは、匿名化を実行するキュレーターが元のデータに完全にアクセスしたと仮定している。
このアクセスを制限する理由は、望ましくないものから実現不可能なものまで様々である。
本稿は,k$-匿名性の統計的概念を維持しつつ,キュレーターに置かれる信頼を減らすための,目的,メトリクス,プロトコル,拡張のアイデアを探求する。
このようなフレームワークの主な目的として,信頼(キュレーターに提供する情報量)とプライバシ(参加者の匿名性)を提案する。
我々は、これらの目標を達成することを目的としたプロトコルのクラスを説明し、プロセスで新たなプライバシー指標を提案し、関連する境界を証明する。
最後に、中央キュレーターの必要性を完全に排除するこの作業の自然な拡張について論じる。
関連論文リスト
- Privacy-Enhanced Adaptive Authentication: User Profiling with Privacy Guarantees [0.6554326244334866]
本稿では,プライバシ強化型アダプティブ認証プロトコルを提案する。
リアルタイムリスクアセスメントに基づいて認証要求を動的に調整する。
CCPAなどのデータ保護規則を遵守することにより,セキュリティを向上するだけでなく,ユーザの信頼も向上する。
論文 参考訳(メタデータ) (2024-10-27T19:11:33Z) - RASE: Efficient Privacy-preserving Data Aggregation against Disclosure Attacks for IoTs [2.1765174838950494]
センサデバイスが生み出すデータを収集・保護する新たなパラダイムについて検討する。
データアグリゲーションとプライバシ保護の共同設計に関するこれまでの研究は、信頼されたフュージョンセンターがプライバシ体制に準拠していることを前提としている。
本稿では,3段階の逐次手順,雑音付加,ランダムな置換,パラメータ推定に一般化可能な新しいパラダイム(RASE)を提案する。
論文 参考訳(メタデータ) (2024-05-31T15:21:38Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
データプライバシを保護するために設計された新しい手法は、慎重に精査する必要がある。
プライバシ保護の失敗は検出し難いが,プライバシ保護法を実装したシステムが攻撃された場合,破滅的な結果につながる可能性がある。
論文 参考訳(メタデータ) (2022-09-29T17:50:23Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - No Intruder, no Validity: Evaluation Criteria for Privacy-Preserving
Text Anonymization [0.48733623015338234]
自動テキスト匿名化システムを開発する研究者や実践者は,その評価手法が,個人を再同定から保護するシステムの能力に本当に反映しているかどうかを慎重に評価すべきである。
本稿では,匿名化手法の技術的性能,匿名化による情報損失,不正文書の非匿名化能力を含む評価基準のセットを提案する。
論文 参考訳(メタデータ) (2021-03-16T18:18:29Z) - On the Privacy-Utility Tradeoff in Peer-Review Data Analysis [34.0435377376779]
ピアレビューの改善に関する研究における大きな障害は、ピアレビューデータの利用不可能である。
我々は、特定の会議のピアレビューデータのプライバシー保護のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-29T21:08:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。