From quantum speed limits to energy-efficient quantum gates
- URL: http://arxiv.org/abs/2202.01839v1
- Date: Thu, 3 Feb 2022 20:42:20 GMT
- Title: From quantum speed limits to energy-efficient quantum gates
- Authors: Maxwell Aifer, Sebastian Deffner
- Abstract summary: We show that this optimal control problem can be solved within the powerful framework of quantum speed limits.
We derive state-independent lower bounds on the energetic cost, from which we find the universally optimal implementation of unitary quantum gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recent breakthroughs in quantum computing promise the nascence of the
quantum information age, quantum states remain delicate to control. Moreover,
the required energy budget for large scale quantum applications has only
sparely been considered. Addressing either of these issues necessitates a
careful study of the most energetically efficient implementation of elementary
quantum operations. In the present analysis, we show that this optimal control
problem can be solved within the powerful framework of quantum speed limits. To
this end, we derive state-independent lower bounds on the energetic cost, from
which we find the universally optimal implementation of unitary quantum gates,
for both single and $N$-qubit operations.
Related papers
- Robust Implementation of Discrete-time Quantum Walks in Any Finite-dimensional Quantum System [2.646968944595457]
discrete-time quantum walk (DTQW) model one of most suitable choices for circuit implementation.
In this paper, we have successfully cut down the circuit cost concerning gate count and circuit depth by half.
For the engineering excellence of our proposed approach, we implement DTQW in any finite-dimensional quantum system with akin efficiency.
arXiv Detail & Related papers (2024-08-01T13:07:13Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Entanglement cost of realizing quantum processes [5.086696108576776]
We develop an efficiently computable tool that reliably estimates the amount of entanglement needed for realizing arbitrary quantum processes.
Our tool applies to the entanglement required to prepare a broad range of quantum states in the regime, surpassing previous methods' limitations.
arXiv Detail & Related papers (2023-11-17T17:07:26Z) - Exact Quantum Speed Limits [0.0]
We derive exact quantum speed limits for the unitary dynamics of pure-state quantum system.
We estimate the evolution time for two- and higher-dimensional quantum systems.
Results will have a significant impact on our understanding of quantum physics.
arXiv Detail & Related papers (2023-05-05T20:38:54Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Noncyclic nonadiabatic holonomic quantum gates via shortcuts to
adiabaticity [5.666193021459319]
We propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum systems via shortcuts to adiabaticity.
Our scheme is readily realizable in physical system currently pursued for implementation of quantum computation.
arXiv Detail & Related papers (2021-05-28T15:23:24Z) - Implementation of hybridly protected quantum gates [2.3274138116397727]
We explore the implementation of hybridly protected quantum operations based on a simple and experimentally achievable spin model.
The protected quantum operations are controllable, well-suited for resolving various quantum tasks.
Our scheme is based on experimentally achievable Hamiltonian with reduced requirement of computational resources.
arXiv Detail & Related papers (2021-05-11T10:04:02Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.