論文の概要: $\mathcal{F}$-EBM: Energy Based Learning of Functional Data
- arxiv url: http://arxiv.org/abs/2202.01929v1
- Date: Fri, 4 Feb 2022 01:01:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-07 14:35:38.597454
- Title: $\mathcal{F}$-EBM: Energy Based Learning of Functional Data
- Title(参考訳): $\mathcal{F}$-EBM: 関数データのエネルギーベース学習
- Authors: Jen Ning Lim, Sebastian Vollmer, Lorenz Wolf, Andrew Duncan
- Abstract要約: エネルギーベースモデル (EBMs) は有限次元空間上の密度をモデル化するための非常に効果的なアプローチであることが証明されている。
有限個の点で評価された関数サンプルから関数の分布を学習できる新しいEMMのクラスを提案する。
- 参考スコア(独自算出の注目度): 1.0896567381206714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy-Based Models (EBMs) have proven to be a highly effective approach for
modelling densities on finite-dimensional spaces. Their ability to incorporate
domain-specific choices and constraints into the structure of the model through
composition make EBMs an appealing candidate for applications in physics,
biology and computer vision and various other fields. In this work, we present
a novel class of EBM which is able to learn distributions of functions (such as
curves or surfaces) from functional samples evaluated at finitely many points.
Two unique challenges arise in the functional context. Firstly, training data
is often not evaluated along a fixed set of points. Secondly, steps must be
taken to control the behaviour of the model between evaluation points, to
mitigate overfitting. The proposed infinite-dimensional EBM employs a latent
Gaussian process, which is weighted spectrally by an energy function
parameterised with a neural network. The resulting EBM has the ability to
utilize irregularly sampled training data and can output predictions at any
resolution, providing an effective approach to up-scaling functional data. We
demonstrate the efficacy of our proposed approach for modelling a range of
datasets, including data collected from Standard and Poor's 500 (S\&P) and UK
National grid.
- Abstract(参考訳): エネルギーベースモデル (EBMs) は有限次元空間上の密度をモデル化するための非常に効果的なアプローチであることが証明されている。
構成を通してモデルの構造にドメイン固有の選択と制約を組み込む能力は、ESMが物理学、生物学、コンピュータビジョンなど様々な分野の応用に魅力的な候補となる。
本研究では,有限個の点で評価された関数標本から関数の分布(曲線や曲面など)を学習できる新しいEMMのクラスを提案する。
機能的文脈において2つのユニークな課題が生じる。
まず、トレーニングデータは固定されたポイントセットに沿って評価されないことが多い。
第2に、オーバーフィッティングを軽減するために、評価ポイント間のモデルの振る舞いを制御するためのステップを取る必要がある。
提案する無限次元ebmは、ニューラルネットワークでパラメータ化されたエネルギー関数によってスペクトル重み付けされる潜在ガウス過程を用いる。
結果として得られたebmは、不規則にサンプリングされたトレーニングデータを利用することができ、任意の解像度で予測を出力できる。
我々は,Standard and Poor's 500 (S\&P) と UK National Grid から収集したデータを含む,幅広いデータセットをモデル化するための提案手法の有効性を実証する。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
この研究は生成モデルの到達範囲を物理的問題領域に拡張する。
基礎となるPDEとの整合性を促進するための効率的なアプローチを提案する。
各種物理課題におけるスコアベース生成モデルの可能性と汎用性を示す。
論文 参考訳(メタデータ) (2023-12-16T19:56:10Z) - Energy-Based Models for Anomaly Detection: A Manifold Diffusion Recovery
Approach [12.623417770432146]
本稿では,データ内の低次元構造を利用した異常検出のための新しいエネルギーベースモデル(EBM)のトレーニング手法を提案する。
提案したアルゴリズムであるManifold Projection-Diffusion Recovery (MPDR) は、トレーニングデータセットを近似した低次元多様体に沿ったデータポイントを摂動する。
実験の結果,MPDRは多種多様なデータ型を含む様々な異常検出タスクに対して高い性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-10-28T11:18:39Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
エネルギー効率のよいメタラーニングフレームワークを提案する。
各タスクは別々のエージェントによって所有されていると仮定するため、メタモデルをトレーニングするために限られたタスクが使用される。
論文 参考訳(メタデータ) (2021-05-31T08:15:44Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
エネルギーベースモデル(EBM)は、ジェネレーションモデリングの強力なフレームワークです。
この研究では、浅いニューラルネットワークに焦点を当てます。
我々は、いわゆる「アクティブ」体制で訓練されたモデルが、関連する「怠慢」またはカーネル体制に対して統計的に有利であることを示す。
論文 参考訳(メタデータ) (2021-04-15T15:34:58Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。