論文の概要: Applications of Machine Learning in Healthcare and Internet of Things
(IOT): A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2202.02868v1
- Date: Sun, 6 Feb 2022 21:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 14:38:45.601694
- Title: Applications of Machine Learning in Healthcare and Internet of Things
(IOT): A Comprehensive Review
- Title(参考訳): 医療とモノのインターネット(iot)における機械学習の応用 : 包括的レビュー
- Authors: Farid Ghareh Mohammadi, Farzan Shenavarmasouleh, Hamid R. Arabnia
- Abstract要約: 本稿では、特に医療における最先端の機械学習応用について概観する。
我々は、医療におけるIoTのオープンな課題を強調し、さらなる研究と研究を科学者に委ねている。
- 参考スコア(独自算出の注目度): 2.1270496914042996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, smart healthcare IoT devices have become ubiquitous, but
they work in isolated networks due to their policy. Having these devices
connected in a network enables us to perform medical distributed data analysis.
However, the presence of diverse IoT devices in terms of technology, structure,
and network policy, makes it a challenging issue while applying traditional
centralized learning algorithms on decentralized data collected from the IoT
devices. In this study, we present an extensive review of the state-of-the-art
machine learning applications particularly in healthcare, challenging issues in
IoT, and corresponding promising solutions. Finally, we highlight some
open-ended issues of IoT in healthcare that leaves further research studies and
investigation for scientists.
- Abstract(参考訳): 近年、スマートヘルスケアIoTデバイスはユビキタスになりつつあるが、ポリシーのため独立したネットワークで機能している。
これらのデバイスをネットワークに接続することで、医療分散データ分析を行うことができる。
しかしながら、テクノロジ、構造、ネットワークポリシといった面での多様なIoTデバイスの存在は、従来の集中学習アルゴリズムをIoTデバイスから収集された分散データに適用する上で、難しい問題となっている。
本稿では,最先端の機械学習アプリケーション,特にヘルスケア,iotの課題,それに対応する有望なソリューションについて広範なレビューを行う。
最後に、医療におけるIoTのオープンな課題を強調し、さらなる研究と研究を科学者に委ねる。
関連論文リスト
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation [4.499833362998488]
本稿では、医療用IoTの基礎、プライバシ、マシンラーニングやH-IoTデバイスに関連するデータセキュリティの課題についてレビューする。
この論文は、知覚、ネットワーク、クラウド、アプリケーションなどの医療用IoTレイヤを監視することの重要性をさらに強調する。
論文 参考訳(メタデータ) (2024-01-17T10:55:26Z) - Towards Smart Healthcare: Challenges and Opportunities in IoT and ML [0.0]
新型コロナウイルス(COVID-19)のパンデミックや他の健康危機は、世界中の医療サービスを促進する必要性を浮き彫りにした。
この章は、IoTヘルスケアセクターに機械学習メソッドを統合する際に直面するハードルを探求することに焦点を当てている。
現在の研究課題と潜在的な機会を包括的にまとめ、三つのシナリオに分類する。
論文 参考訳(メタデータ) (2023-12-09T10:45:44Z) - Model-based Digital Twins of Medicine Dispensers for Healthcare IoT
Applications [5.6001750995050985]
本稿では,医療用ディスペンサーのデジタル双生児(DT)の作成と運用のためのモデルに基づくアプローチを提案する。
オスロ市における医療用ディスペンサーを用いた産業用IoTシステムによるアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-07T19:52:55Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
論文 参考訳(メタデータ) (2023-11-10T18:13:08Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Federated Learning and Blockchain-enabled Fog-IoT Platform for Wearables
in Predictive Healthcare [6.045977607688583]
フォグIoTネットワーク内で,フェデレーション学習とプライベートブロックチェーン技術を用いたプラットフォームを提案する。
これらの技術は、ネットワーク内のデータを保護するプライバシー保護機能を備えている。
実験結果によると、導入した実装は患者のプライバシと予測サービスの整合性を効果的に維持することができる。
論文 参考訳(メタデータ) (2023-01-11T15:16:44Z) - Machine Learning for Massive Industrial Internet of Things [69.52379407906017]
モノのインターネット(IIoT)は、モノのインターネット技術を産業環境に統合することで、将来の製造施設に革命をもたらします。
大規模なIIoTデバイスのデプロイでは、無線ネットワークがさまざまなQoS(Quality-of-Service)要件でユビキタス接続をサポートすることは困難である。
まず、一般的な非クリティカルかつクリティカルなIIoTユースケースの要件を要約します。
次に、大規模なIIoTシナリオと対応する機械学習ソリューションのユニークな特性を、その制限と潜在的な研究方向で識別します。
論文 参考訳(メタデータ) (2021-03-10T20:10:53Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
IoT(Internet of Things)は、デプロイされるデバイスやアプリケーションの数の増加とともに、ネットワークのメンテナンス手順に大きな課題をもたらしている。
部分観測可能なマルコフ決定プロセスとして,IoTネットワークにおける自律的メンテナンスの問題を定式化する。
深層強化学習アルゴリズム (drl) を用いて, 保守手順が整っているか否かを判断するエージェントを訓練し, 前者の場合, 適切なメンテナンス方法が必要となる。
論文 参考訳(メタデータ) (2020-12-31T11:19:51Z) - A Federated Learning Framework for Healthcare IoT devices [2.642698101441705]
深層ニューラルネットワークを学習するための高度なフェデレーション学習フレームワークを提案する。
提案フレームワークは,バニラフェデレート学習における同期トラフィックの0.2%しか必要とせず,低精度の損失を保証している。
論文 参考訳(メタデータ) (2020-05-07T22:58:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。