論文の概要: Soft Actor-Critic with Inhibitory Networks for Faster Retraining
- arxiv url: http://arxiv.org/abs/2202.02918v1
- Date: Mon, 7 Feb 2022 03:10:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 15:05:25.356167
- Title: Soft Actor-Critic with Inhibitory Networks for Faster Retraining
- Title(参考訳): 高速リトレーニングのための抑制ネットワークを用いたソフトアクター・クリティカル
- Authors: Jaime S. Ide, Daria Mi\'covi\'c, Michael J. Guarino, Kevin Alcedo,
David Rosenbluth
- Abstract要約: 事前訓練されたモデルの再利用は、深い強化学習において重要である。
目的や制約が以前学んだスキルと矛盾している場合、新しいスキルをどうやって獲得するかは不明だ。
本稿では, 阻止ネットワークを用いて, 独立かつ適応的な状態値評価を可能にする手法を提案する。
- 参考スコア(独自算出の注目度): 0.26249027950824505
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reusing previously trained models is critical in deep reinforcement learning
to speed up training of new agents. However, it is unclear how to acquire new
skills when objectives and constraints are in conflict with previously learned
skills. Moreover, when retraining, there is an intrinsic conflict between
exploiting what has already been learned and exploring new skills. In soft
actor-critic (SAC) methods, a temperature parameter can be dynamically adjusted
to weight the action entropy and balance the explore $\times$ exploit
trade-off. However, controlling a single coefficient can be challenging within
the context of retraining, even more so when goals are contradictory. In this
work, inspired by neuroscience research, we propose a novel approach using
inhibitory networks to allow separate and adaptive state value evaluations, as
well as distinct automatic entropy tuning. Ultimately, our approach allows for
controlling inhibition to handle conflict between exploiting less risky,
acquired behaviors and exploring novel ones to overcome more challenging tasks.
We validate our method through experiments in OpenAI Gym environments.
- Abstract(参考訳): 事前訓練されたモデルの再利用は、新しいエージェントのトレーニングを高速化するために、深層強化学習において重要である。
しかし、目標や制約が以前の学習したスキルと矛盾している場合、新しいスキルを身につける方法が不明である。
さらに、再トレーニング時には、すでに学んできたことの活用と新しいスキルの探求との間には、内在的な葛藤がある。
soft actor-critic (sac) メソッドでは、温度パラメータを動的に調整してアクションエントロピーを重み付け、explore $\times$ exploit トレードオフのバランスをとることができる。
しかし、単一係数の制御は再訓練の文脈において困難であり、さらにゴールが矛盾する場合にも困難である。
本研究は,神経科学研究に触発されて,独立かつ適応的な状態評価と,異なる自動エントロピーチューニングを可能にするために,抑制ネットワークを用いた新しいアプローチを提案する。
最終的に、我々のアプローチは、リスクの少ない、獲得された行動の悪用と、より困難なタスクを克服するための新しい行動の間の競合に対処するための抑制を制御できる。
本手法はOpenAI Gym環境での実験を通して検証する。
関連論文リスト
- SLIM: Skill Learning with Multiple Critics [8.645929825516818]
自己指導型スキル学習は、環境の基盤となるダイナミクスを活用する有用な行動を取得することを目的としている。
相互情報に基づく潜在変数モデルは、このタスクでは成功したが、ロボット操作の文脈では依然として苦戦している。
SLIMは,ロボット操作に特化して,スキル発見のための多批判学習手法である。
論文 参考訳(メタデータ) (2024-02-01T18:07:33Z) - Data-Driven Inverse Reinforcement Learning for Expert-Learner Zero-Sum
Games [30.720112378448285]
逆強化学習をエキスパート-ラーナーインタラクションとして定式化する。
学習者エージェントに対して、専門家や対象エージェントの最適性能意図が不明である。
我々は、専門家や学習者エージェントのダイナミクスの知識を必要としない、政治以外のIRLアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-05T10:35:08Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
ほとんどの堅牢なトレーニング技術は、摂動入力のモデル精度を改善することを目的としている。
強靭性の代替形態として、ニューラルネットワークが挑戦的な状況で犯した誤りの深刻度を低減することを目的としている。
我々は、現在の対人訓練手法を活用して、トレーニングプロセス中に標的の対人攻撃を発生させる。
その結果,本手法は,標準モデルや逆トレーニングモデルと比較して,誤り重大性に対して優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-21T22:01:36Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
時間差学習は, エージェントが訓練の初期段階において, 値関数の非平滑成分を適合させるのに役立つことを理論的に示す。
本研究では,高密度報酬タスクの時間差アルゴリズムを用いて学習したニューラルネットワークが,ランダムなネットワークや政策手法で学習した勾配ネットワークよりも,状態間の一般化が弱いことを示す。
論文 参考訳(メタデータ) (2022-06-05T08:49:16Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
本稿では,スキル埋め込み空間を通じてパラメータ化された,密接に関連するスキルの強化学習のための学習機構を提案する。
本研究の主な貢献は、エントロピー規則化政策勾配定式化の助けを借りて、強化学習のための敵の訓練体制を定式化することである。
論文 参考訳(メタデータ) (2022-01-27T19:51:09Z) - ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via
Convex Relaxation [32.091346776897744]
サイバー物理攻撃は、マルチエージェント強化学習の堅牢性に挑戦することができる。
我々は,他のエージェントの最悪のポリシー更新を推測するミニマックスMARL手法を提案する。
論文 参考訳(メタデータ) (2021-09-14T16:18:35Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
我々は、フィードバックと非政治学習の両方の長所を生かした、非政治的、インタラクティブな強化学習アルゴリズムを提案する。
提案手法は,従来ヒト・イン・ザ・ループ法で検討されていたよりも複雑度の高いタスクを学習可能であることを実証する。
論文 参考訳(メタデータ) (2021-06-09T14:10:50Z) - Self-Progressing Robust Training [146.8337017922058]
敵対的なトレーニングのような現在の堅牢なトレーニング方法は、敵対的な例を生成するために「攻撃」を明示的に使用します。
我々はSPROUTと呼ばれる自己プログレッシブ・ロバスト・トレーニングのための新しいフレームワークを提案する。
その結果,スケーラブルで効果的で攻撃に依存しないロバストなトレーニング手法に新たな光を当てた。
論文 参考訳(メタデータ) (2020-12-22T00:45:24Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
教官が特権情報にアクセスして意思決定を行う場合、この情報は模倣学習中に疎外されることを示す。
本稿では,このギャップに対処するため,適応的不規則化(ADVISOR)を提案する。
ADVISORは、トレーニング中の模倣と報酬に基づく強化学習損失を動的に重み付け、模倣と探索をオンザフライで切り替えることを可能にする。
論文 参考訳(メタデータ) (2020-07-23T17:59:57Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z) - Online Constrained Model-based Reinforcement Learning [13.362455603441552]
主要な要件は、限られた時間とリソース予算内に留まりながら、継続的な状態とアクションスペースを扱う能力である。
本稿では,ガウス過程回帰と回帰水平制御を組み合わせたモデルに基づくアプローチを提案する。
本研究では,自動走行作業におけるオンライン学習のメリットを実証する。
論文 参考訳(メタデータ) (2020-04-07T15:51:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。