論文の概要: Real-Time Event-Based Tracking and Detection for Maritime Environments
- arxiv url: http://arxiv.org/abs/2202.04231v1
- Date: Wed, 9 Feb 2022 02:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 16:07:05.491560
- Title: Real-Time Event-Based Tracking and Detection for Maritime Environments
- Title(参考訳): リアルタイムイベントベース海洋環境の追跡・検出
- Authors: Stephanie Aelmore, Richard C. Ordonez, Shibin Parameswaran, Justin
Mauger
- Abstract要約: イベントカメラは、高速で動くオブジェクトをキャプチャできるため、オブジェクト追跡アプリケーションに最適である。
既存のイベントベースのクラスタリングと、監視とオブジェクト検出のための機能トラッキングアプローチは、ほとんどのケースでうまく機能します。
しかし、海洋環境は、大半を発生させる波の傾向など、ユニークな課題を生んでいる。
- 参考スコア(独自算出の注目度): 1.6058099298620423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are ideal for object tracking applications due to their ability
to capture fast-moving objects while mitigating latency and data redundancy.
Existing event-based clustering and feature tracking approaches for
surveillance and object detection work well in the majority of cases, but fall
short in a maritime environment. Our application of maritime vessel detection
and tracking requires a process that can identify features and output a
confidence score representing the likelihood that the feature was produced by a
vessel, which may trigger a subsequent alert or activate a classification
system. However, the maritime environment presents unique challenges such as
the tendency of waves to produce the majority of events, demanding the majority
of computational processing and producing false positive detections. By
filtering redundant events and analyzing the movement of each event cluster, we
can identify and track vessels while ignoring shorter lived and erratic
features such as those produced by waves.
- Abstract(参考訳): イベントカメラは、レイテンシとデータの冗長性を緩和しながら、素早く動くオブジェクトをキャプチャできるため、オブジェクト追跡アプリケーションに最適である。
監視とオブジェクト検出のための既存のイベントベースのクラスタリングと特徴追跡アプローチは、ほとんどのケースでうまく機能するが、海洋環境では不足する。
海上船舶の検知・追跡の応用には,特徴を識別し,その特徴が船によって生成された可能性を示す信頼スコアを出力するプロセスが必要である。
しかし, 海洋環境は, 波動による事象の多数発生傾向, 計算処理の大部分の要求, 偽陽性検出など, 独特な課題を呈している。
冗長なイベントをフィルタリングし、各イベントクラスタの動きを分析することで、波によって生成されたような短命で不規則な特徴を無視しながら、船舶を特定し、追跡することができる。
関連論文リスト
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
本研究では,ビジネスプロセスにおける異常検出のための新しいフレームワークを提案する。
まず、属性グラフとしてオブジェクト中心のイベントログのプロセス依存性を再構築する。
次に、異常事象を検出するために、グラフ畳み込みオートエンコーダアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-02-14T14:17:56Z) - Object-centric Cross-modal Feature Distillation for Event-based Object
Detection [87.50272918262361]
RGB検出器は、イベントデータのばらつきと視覚的詳細の欠如により、イベントベースの検出器よりも優れている。
これら2つのモード間の性能ギャップを縮めるための新しい知識蒸留手法を開発した。
対象中心蒸留により,イベントベースの学生物体検出装置の性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-11-09T16:33:08Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - A CNN-LSTM Architecture for Marine Vessel Track Association Using
Automatic Identification System (AIS) Data [2.094022863940315]
本研究では,トラックアソシエーションのための1次元CNN-LSTMアーキテクチャに基づくフレームワークを提案する。
提案した枠組みは、自動識別システム(AIS)を介して収集された船舶の位置と動きデータを入力とし、最も可能性の高い船舶軌道をリアルタイムで出力として返す。
論文 参考訳(メタデータ) (2023-03-24T15:26:49Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
イベントベースのカメラはバイオインスパイアされたセンサーで、各ピクセルの明るさ変化を非同期に捉える。
イベントストリームは、正極性と負極性の両方のためにx-y-t座標の格子に分割され、3次元テンソル表現として柱の集合が生成される。
長メモリは適応型convLSTMの隠れ状態に符号化され、短メモリはイベントピラー間の空間的時間的相関を計算することによってモデル化される。
論文 参考訳(メタデータ) (2023-03-17T12:12:41Z) - Online Monitoring of Object Detection Performance During Deployment [6.166295570030645]
入力フレームのスライディングウィンドウ上での平均平均精度(mAP)を予測し,対象検出器の性能を監視するカスケードニューラルネットワークを提案する。
我々は、自律走行データセットと物体検出装置の異なる組み合わせを用いて、提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-11-16T07:01:43Z) - A Spatio-temporal Track Association Algorithm Based on Marine Vessel
Automatic Identification System Data [5.453186558530502]
動的脅威環境でリアルタイムに移動する物体を追跡することは、国家安全保障と監視システムにおいて重要である。
動きの異常パターンを見つけるには、正確なデータアソシエーションアルゴリズムが必要である。
自動識別システムにより船舶の位置と姿勢の観察が収集されるとき, 海上船舶の追跡のための時間的アプローチを開発する。
論文 参考訳(メタデータ) (2020-10-29T20:11:38Z) - Efficient and accurate object detection with simultaneous classification
and tracking [1.4620086904601473]
本稿では,ポイントストリーム内の同時分類と追跡に基づく検出フレームワークを提案する。
このフレームワークでは、トラッカーが点雲のシーケンスでデータアソシエーションを行い、冗長な処理を避けるために検出器を誘導する。
ベンチマーク・データセットを用いて実験を行い,提案手法が従来のトラッキング・バイ・ディテクト・アプローチより優れていることを示した。
論文 参考訳(メタデータ) (2020-07-04T10:22:33Z) - Challenges in Vessel Behavior and Anomaly Detection: From Classical
Machine Learning to Deep Learning [10.61567813380562]
本稿では,従来の機械学習と深層学習の課題と機会について論じる。
これらの課題に対処することは、実際のインテリジェントな海上監視システムにとって重要なステップであり、新しい方法やツールの研究を動機づけたいと考えています。
論文 参考訳(メタデータ) (2020-04-07T21:25:12Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
既存のイベント検出システムは、主に学習ベースであり、大量のトレーニングデータが利用可能な場合、十分なパフォーマンスを実現している。
現実のシナリオでは、十分なラベル付きトレーニングデータの収集は高価であり、時には不可能である。
本稿では,交通監視のためのトレーニング不要な単眼3Dイベント検出システムを提案する。
論文 参考訳(メタデータ) (2020-02-01T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。