論文の概要: Splitting numerical integration for matrix completion
- arxiv url: http://arxiv.org/abs/2202.06482v1
- Date: Mon, 14 Feb 2022 04:45:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-02-16 04:23:00.759812
- Title: Splitting numerical integration for matrix completion
- Title(参考訳): 行列補完のための分割数値積分
- Authors: Qianqian Song
- Abstract要約: 低階行列近似のための新しいアルゴリズムを提案する。
このアルゴリズムは最適化の枠組みにおける古典的な勾配勾配の適応である。
実験結果から,本手法は大規模問題に対して優れたスケーラビリティを有することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Low rank matrix approximation is a popular topic in machine learning. In this
paper, we propose a new algorithm for this topic by minimizing the
least-squares estimation over the Riemannian manifold of fixed-rank matrices.
The algorithm is an adaptation of classical gradient descent within the
framework of optimization on manifolds. In particular, we reformulate an
unconstrained optimization problem on a low-rank manifold into a differential
dynamic system. We develop a splitting numerical integration method by applying
a splitting integration scheme to the dynamic system. We conduct the
convergence analysis of our splitting numerical integration algorithm. It can
be guaranteed that the error between the recovered matrix and true result is
monotonically decreasing in the Frobenius norm. Moreover, our splitting
numerical integration can be adapted into matrix completion scenarios.
Experimental results show that our approach has good scalability for
large-scale problems with satisfactory accuracy
- Abstract(参考訳): 低階行列近似は機械学習において一般的なトピックである。
本稿では,固定ランク行列のリーマン多様体上の最小二乗推定を最小化し,この話題に対する新しいアルゴリズムを提案する。
このアルゴリズムは、多様体上の最適化の枠組みにおける古典的な勾配降下の適応である。
特に、低ランク多様体上の制約のない最適化問題を微分力学系に再構成する。
動的システムに分割積分スキームを適用し,分割数値積分法を開発した。
分割数値積分アルゴリズムの収束解析を行う。
回復行列と真の結果の間の誤差がフロベニウスノルムにおいて単調に減少していることを保証することができる。
さらに,分割数値積分は行列補完シナリオに適応することができる。
実験結果から,本手法は精度の高い大規模問題に対して優れたスケーラビリティを有することが示された。
関連論文リスト
- The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering
In High Dimensions [32.30527731746912]
低ランク行列の低ランク近似を伝播する新しい近似フィルタリング・平滑化法を提案する。
提案手法は, 計算複雑性を(カルマンフィルタの場合) 立方体から, 最悪ケースにおける状態空間サイズにおけるエンフクトラティックに還元する。
論文 参考訳(メタデータ) (2023-06-13T13:50:31Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
対称正定値多様体(SPD)上の関数の最小化のための低複素性アルゴリズムを開発する。
提案手法は、慎重に選択された部分空間を利用して、更新をイテレートのコレスキー因子とスパース行列の積として記述することができる。
論文 参考訳(メタデータ) (2023-05-03T11:11:46Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning [24.97120654216651]
部分多様体上の運動量を持つ難しい微分方程式の解法を示す。
我々はリーマン正規座標の一般化版を提案する。
我々は,行列乗算のみを用いることで,構造化共分散の既存手法を単純化し,低精度のディープラーニングのための行列非逆2textnd$ordersを開発する。
論文 参考訳(メタデータ) (2023-02-20T03:31:11Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Nonlinear matrix recovery using optimization on the Grassmann manifold [18.655422834567577]
本研究では,列が部分空間の結合などの非線形構造に従う部分観測された高階クラスタリング行列の復元問題について検討する。
交代極限はクルディカ・ロジャシ性質を用いて一意点に収束することを示す。
論文 参考訳(メタデータ) (2021-09-13T16:13:13Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Automatic differentiation for Riemannian optimization on low-rank matrix
and tensor-train manifolds [71.94111815357064]
科学計算および機械学習アプリケーションでは、行列およびより一般的な多次元配列(テンソル)は、しばしば低ランク分解の助けを借りて近似することができる。
低ランク近似を見つけるための一般的なツールの1つはリーマン最適化を使うことである。
論文 参考訳(メタデータ) (2021-03-27T19:56:00Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。