論文の概要: Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints
- arxiv url: http://arxiv.org/abs/2406.16956v1
- Date: Thu, 20 Jun 2024 23:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 19:10:10.508219
- Title: Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints
- Title(参考訳): 幾何学的制約を持つ非線形物理系のデータ駆動計算法
- Authors: Yunjin Tong,
- Abstract要約: 本稿では、物理に基づく先行技術と高度な機械学習技術との相乗効果を生かした、新しいデータ駆動型フレームワークを提案する。
本フレームワークでは, 特定の非線形系のクラスに合わせて, 特定の物理系を組み込んだ4つのアルゴリズムを紹介する。
これらの事前の統合はまた、ニューラルネットワークの表現力を高め、物理的現象に典型的な複雑なパターンをキャプチャすることを可能にする。
- 参考スコア(独自算出の注目度): 0.7252027234425334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a landscape where scientific discovery is increasingly driven by data, the integration of machine learning (ML) with traditional scientific methodologies has emerged as a transformative approach. This paper introduces a novel, data-driven framework that synergizes physics-based priors with advanced ML techniques to address the computational and practical limitations inherent in first-principle-based methods and brute-force machine learning methods. Our framework showcases four algorithms, each embedding a specific physics-based prior tailored to a particular class of nonlinear systems, including separable and nonseparable Hamiltonian systems, hyperbolic partial differential equations, and incompressible fluid dynamics. The intrinsic incorporation of physical laws preserves the system's intrinsic symmetries and conservation laws, ensuring solutions are physically plausible and computationally efficient. The integration of these priors also enhances the expressive power of neural networks, enabling them to capture complex patterns typical in physical phenomena that conventional methods often miss. As a result, our models outperform existing data-driven techniques in terms of prediction accuracy, robustness, and predictive capability, particularly in recognizing features absent from the training set, despite relying on small datasets, short training periods, and small sample sizes.
- Abstract(参考訳): 科学的発見がデータによってますます推進される状況において、機械学習(ML)と従来の科学的方法論の統合は、変革的なアプローチとして現れている。
本稿では、第一原理に基づく手法やブルートフォース機械学習手法に固有の計算的・実践的制約に対処するために、物理ベースの先行技術と高度なML技術とを相乗化する、新しいデータ駆動型フレームワークを提案する。
本フレームワークでは, 分離型および非分離型ハミルトニアン系, 双曲型偏微分方程式, 非圧縮型流体力学を含む, 特定の物理系を, 特定の非線形系に組み込む4つのアルゴリズムを紹介する。
物理法則の本質的な定式化は、システムの本質的な対称性と保存法則を保存し、解が物理的に妥当で計算学的に効率的であることを保証する。
これらの先行性の統合はまた、ニューラルネットワークの表現力を高め、従来の手法がしばしば見逃す物理現象に典型的な複雑なパターンをキャプチャすることを可能にする。
その結果、予測精度、ロバスト性、予測能力の点で既存のデータ駆動技術よりも優れており、特に、小さなデータセット、短いトレーニング期間、小さなサンプルサイズに依存するにもかかわらず、トレーニングセットから欠落した特徴を認識している。
関連論文リスト
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
本稿では,新しい物理符号化残差ニューラルネットワークアーキテクチャに基づく汎用的アプローチを提案する。
本手法は,物理モデルからの数学的演算子として物理ブロックを,フィードフォワード層を構成する学習ブロックと組み合わせる。
従来のニューラルネットワーク方式と比較して,本手法はデータ要求量を大幅に減らして一般化性を向上させる。
論文 参考訳(メタデータ) (2024-11-18T11:58:20Z) - Higher order quantum reservoir computing for non-intrusive reduced-order models [0.0]
量子貯水池計算技術(QRC)は、相互接続された小さな量子系のアンサンブルを利用するハイブリッド量子古典的フレームワークである。
QRCは, 複雑な非線形力学系を安定かつ高精度に予測できることを示す。
論文 参考訳(メタデータ) (2024-07-31T13:37:04Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
本稿では,グラフニューラルネットワークに依存しない機械学習手法を提案する。
提案手法は, 明示的な形状パラメータ化を必要とせずに, 大きなメッシュを容易に扱うことができる。
論文 参考訳(メタデータ) (2023-05-22T09:50:15Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Tensor network approaches for learning non-linear dynamical laws [0.0]
制御方程式のテンソルネットワークに基づくパラメータ化により,様々な物理的制約を捉えることができることを示す。
データから構造化された動的法則を復元する物理インフォームドアプローチを提案し、表現性とスケーラビリティの必要性を適応的にバランスさせる。
論文 参考訳(メタデータ) (2020-02-27T19:02:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。