Quantum Squeezing of Slow-Light Solitons
- URL: http://arxiv.org/abs/2202.11350v1
- Date: Wed, 23 Feb 2022 08:37:08 GMT
- Title: Quantum Squeezing of Slow-Light Solitons
- Authors: Jinzhong Zhu, Qi Zhang and Guoxiang Huang
- Abstract summary: We show that significant quantum squeezing of the slow-light soliton can be realized within a short propagation distance.
Results are helpful for understanding the quantum property of slow-light solitons and for realizing light squeezing via EIT in cold atomic gases experimentally.
- Score: 6.589813623221242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the quantum squeezing of slow-light solitons generated in a
$\Lambda$-shaped three-level atomic system working under condition of
electromagnetically induced transparency (EIT). We show that due to the giant
Kerr nonlinearity contributed from the EIT effect, significant quantum
squeezing of the slow-light soliton can be realized within a short propagation
distance. The results reported here are helpful for understanding the quantum
property of slow-light solitons and for realizing light squeezing via EIT in
cold atomic gases experimentally.
Related papers
- Robust Single-Photon Generation for Quantum Information Enabled by Stimulated Adiabatic Rapid Passage [0.0]
We present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence.
Our novel approach combines the advantages of adiabatic rapid passage (ARP) and stimulated two-photon excitation (sTPE)
We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state.
arXiv Detail & Related papers (2024-09-21T02:12:16Z) - Velocity Scanning Tomography for Room-Temperature Quantum Simulation [19.215193904335496]
We invent and validate a velocity scanning tomography technique to discern the responses of atoms with different velocities.
By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL.
We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity.
arXiv Detail & Related papers (2024-06-04T17:08:30Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Anomalous spontaneous emission dynamics at chiral exceptional points [0.9558392439655011]
We present an analytical description of local density of states for microcavity featuring chiral EPs.
We unveil the anomalous spontaneous emission dynamics from a quantum emitter due to the non-Lorentzian response of EPs.
Our work unveils the exotic cavity quantum electrodynamics unique to chiral EPs, which opens the door for controlling light-matter interaction at the quantum level.
arXiv Detail & Related papers (2022-04-11T08:15:24Z) - Quantum Squeezing of Slow-Light Dark Solitons via Electromagnetically
Induced Transparency [0.0]
We consider the quantum effect of slow light dark soliton (SLDS) in a cold atomic gas with defocuing Kerr nonlinearity via electromagnetically induced transparency (EIT)
We calculate the quantum fluctuations of the SLDS by solving the relevant non-Hermitian eigenvalue problem describing the quantum fluctuations.
We demonstrate that, due to the large Kerr nonlinearity contributed from the EIT effect, a significant quantum squeezing of the SLDS can be realized.
arXiv Detail & Related papers (2022-02-21T05:33:48Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Single-mode Quantum Non-Gaussian Light from Warm Atoms [0.0]
We show the generation of light with provably QNG features from a tunable warm atomic ensemble in a single-mode regime.
Despite its high sensitivity to any excess noise, a direct observability of heralded QNG light could be achieved.
arXiv Detail & Related papers (2022-01-14T10:07:01Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.