論文の概要: Flow-based sampling in the lattice Schwinger model at criticality
- arxiv url: http://arxiv.org/abs/2202.11712v1
- Date: Wed, 23 Feb 2022 19:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 18:06:34.031789
- Title: Flow-based sampling in the lattice Schwinger model at criticality
- Title(参考訳): 臨界格子シュウィンガー模型における流れに基づくサンプリング
- Authors: Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett,
Gurtej Kanwar, S\'ebastien Racani\`ere, Danilo J. Rezende, Fernando
Romero-L\'opez, Phiala E. Shanahan, Julian M. Urban
- Abstract要約: フローベースアルゴリズムは、格子場理論への応用のためのフィールド分布の効率的なサンプリングを提供することができる。
フェルミオン質量の臨界値におけるシュウィンガーモデルにおけるロバストな流れに基づくサンプリングの数値的な実演を行う。
- 参考スコア(独自算出の注目度): 54.48885403692739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent results suggest that flow-based algorithms may provide efficient
sampling of field distributions for lattice field theory applications, such as
studies of quantum chromodynamics and the Schwinger model. In this work, we
provide a numerical demonstration of robust flow-based sampling in the
Schwinger model at the critical value of the fermion mass. In contrast, at the
same parameters, conventional methods fail to sample all parts of configuration
space, leading to severely underestimated uncertainties.
- Abstract(参考訳): 近年の研究では、フローベースアルゴリズムは、量子色力学やシュウィンガーモデルなど、格子場理論の応用のためのフィールド分布の効率的なサンプリングを提供する可能性が示唆されている。
本研究では,シュウィンガーモデルにおいて,フェルミオン質量の臨界値におけるロバストな流れに基づくサンプリングの数値的な実演を行う。
対照的に、同じパラメータでは、従来の方法では構成空間のすべての部分のサンプリングに失敗し、不確かさを過小評価している。
関連論文リスト
- Physics-Conditioned Diffusion Models for Lattice Gauge Theory [9.0170155142412]
我々は格子ゲージ理論をシミュレートするための拡散モデルを開発し、量子化をサンプリングの物理条件として明示的に組み込む。
2つの時空次元におけるU(1)ゲージ理論の適用性を示す。
論文 参考訳(メタデータ) (2025-02-08T09:50:27Z) - Accelerated Diffusion Models via Speculative Sampling [89.43940130493233]
投機的サンプリングは、大規模言語モデルにおける推論を加速する一般的な手法である。
我々は投機的サンプリングを拡散モデルに拡張し、連続したベクトル値のマルコフ連鎖を介してサンプルを生成する。
本稿では,ドラフトモデルをトレーニングする必要のない,シンプルで効果的なアプローチを含む,さまざまなドラフト戦略を提案する。
論文 参考訳(メタデータ) (2025-01-09T16:50:16Z) - Metropolis Sampling for Constrained Diffusion Models [11.488860260925504]
近年,画像領域における生成モデルの主要なパラダイムとして拡散モデルが出現している。
我々は、ブラウン運動を反映した、別の単純ノルマント化スキームを導入する。
論文 参考訳(メタデータ) (2023-07-11T17:05:23Z) - Aspects of scaling and scalability for flow-based sampling of lattice
QCD [137.23107300589385]
格子場理論におけるサンプリングへの機械学習正規化流れの最近の応用は、そのような手法が臨界減速と位相凍結を緩和できる可能性を示唆している。
最先端の格子量子色力学計算に適用できるかどうかはまだ定かではない。
論文 参考訳(メタデータ) (2022-11-14T17:07:37Z) - Gauge-equivariant flow models for sampling in lattice field theories
with pseudofermions [51.52945471576731]
本研究は,フェルミオン行列式の推定器として擬フェルミオンを用いたフェルミオン格子場理論におけるフローベースサンプリングのためのゲージ不変アーキテクチャを提案する。
これは最先端の格子場理論計算におけるデフォルトのアプローチであり、QCDのような理論へのフローモデルの実践的応用に欠かせない。
論文 参考訳(メタデータ) (2022-07-18T21:13:34Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Flow-based sampling for fermionic lattice field theories [8.46509435333566]
この研究は、動的フェルミオンを持つ理論のフローベースサンプリングを可能にするアプローチを開発する。
実演として、これらの手法は、無質量安定フェルミオンの2次元理論のための場配置のサンプリングに応用される。
論文 参考訳(メタデータ) (2021-06-10T17:32:47Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。