論文の概要: A gentle introduction to Quantum Natural Language Processing
- arxiv url: http://arxiv.org/abs/2202.11766v1
- Date: Wed, 23 Feb 2022 20:17:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 16:32:39.748376
- Title: A gentle introduction to Quantum Natural Language Processing
- Title(参考訳): 量子自然言語処理入門
- Authors: Shervin Le Du, Senaida Hern\'andez Santana, Giannicola Scarpa
- Abstract要約: このマスターの論文の主な目標は、量子自然言語処理の導入である。
QNLPは、文の意味を量子コンピュータに符号化されたベクトルとして表現することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main goal of this master's thesis is to introduce Quantum Natural
Language Processing (QNLP) in a way understandable by both the NLP engineer and
the quantum computing practitioner. QNLP is a recent application of quantum
computing that aims at representing sentences' meaning as vectors encoded into
quantum computers. To achieve this, the distributional meaning of words is
extended by the compositional meaning of sentences (DisCoCat model) : the
vectors representing words' meanings are composed through the syntactic
structure of the sentence. This is done using an algorithm based on tensor
products. We see that this algorithm is inefficient on classical computers but
scales well using quantum circuits. After exposing the practical details of its
implementation, we go through three use-cases.
- Abstract(参考訳): この修士論文の主な目標は、量子自然言語処理(QNLP)を導入して、NLPエンジニアと量子コンピューティング実践者の両方が理解できるようにすることである。
QNLPは、文の意味を量子コンピュータに符号化されたベクトルとして表現することを目的とした量子コンピューティングの最近の応用である。
これを実現するために、文の構成的意味(DisCoCatモデル)によって単語の分布的意味が拡張され、文の構文的構造を通じて単語の意味を表すベクトルが合成される。
これはテンソル積に基づくアルゴリズムを用いて行われる。
このアルゴリズムは古典的コンピュータでは非効率であるが、量子回路を用いてスケールする。
実装の実際的な詳細を明らかにすると、ユースケースは3つある。
関連論文リスト
- Quantum Algorithms for Compositional Text Processing [1.3654846342364308]
本稿では、最近提案された自然言語用DisCoCircフレームワークに注目し、量子適応QDisCoCircを提案する。
これはAI解釈可能なレンダリングに対する構成的アプローチによって動機付けられている。
テキスト類似性のモデルネイティブな原始演算に対しては、フォールトトレラントな量子コンピュータのための量子アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-08-12T11:21:40Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
本稿では,高レベル言語で記述された量子回路から,アルゴリズム固有のグラフ状態を作成する量子回路コンパイラを提案する。
この計算は、このグラフ状態に関する一連の非パウリ測度を用いて実装することができる。
論文 参考訳(メタデータ) (2022-09-15T14:52:31Z) - Near-Term Advances in Quantum Natural Language Processing [0.03298597939573778]
本稿では,自然言語処理におけるいくつかのタスクが,量子コンピュータを用いてすでに実行可能であることを示す実験について述べる。
1つ目は、単語トピックのスコアリング重みを個々のキュービットの分数回転として実装する、明示的な単語ベースのアプローチである。
制御NOTゲートを絡み合わせることで、これらの重みの蓄積に基づいて、新しいフレーズを分類する。
論文 参考訳(メタデータ) (2022-06-05T13:10:46Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
特定の演算を行うユニタリ行列が与えられた場合、等価な量子回路を得るのは非自明な作業である。
量子ウォーカーのコイン、トフォリゲート、フレドキンゲートの3つの問題が研究されている。
提案したアルゴリズムは量子回路の分解に効率的であることが証明され、汎用的なアプローチとして、利用可能な計算力によってのみ制限される。
論文 参考訳(メタデータ) (2021-06-06T13:15:25Z) - QNLP in Practice: Running Compositional Models of Meaning on a Quantum
Computer [0.7194733565949804]
本研究では,NISQ(Noisy Intermediate-Scale Quantum)コンピュータ上で行った最初のNLP実験について報告する。
我々は、量子回路への自然なマッピングを持つ文の表現を作成する。
我々は、量子ハードウェア上で単純な文分類タスクを解くNLPモデルをうまく訓練する。
論文 参考訳(メタデータ) (2021-02-25T13:37:33Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
量子機械学習手法を用いて表情認識の可能な解を示す。
適切に定義された量子状態の振幅に符号化されたグラフの隣接行列を操作する量子回路を定義する。
論文 参考訳(メタデータ) (2021-02-09T13:48:00Z) - Foundations for Near-Term Quantum Natural Language Processing [0.17205106391379021]
量子自然言語処理(QNLP)の概念と数学的基礎を提供する。
自然言語の量子モデルがどのように言語的意味と豊かな言語構造を正準的に組み合わせているかを思い出す。
実証的エビデンスと数学一般性に関する正式な記述を支援するための参照を提供します。
論文 参考訳(メタデータ) (2020-12-07T14:49:33Z) - Quantum Natural Language Processing on Near-Term Quantum Computers [0.0]
近距離量子コンピュータにおける自然言語処理のためのフルスタックパイプライン、別名QNLPについて述べる。
DisCoCatは、前グループ文法の構成構造を拡張し補完する言語モデリングフレームワークである。
本稿では,DisCoCat図を量子回路にマッピングする手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T16:42:54Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。