論文の概要: Machine Learning for Intrusion Detection in Industrial Control Systems:
Applications, Challenges, and Recommendations
- arxiv url: http://arxiv.org/abs/2202.11917v1
- Date: Thu, 24 Feb 2022 06:11:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 18:10:48.227613
- Title: Machine Learning for Intrusion Detection in Industrial Control Systems:
Applications, Challenges, and Recommendations
- Title(参考訳): インダストリアル制御システムにおける侵入検出のための機械学習:応用,課題,推奨
- Authors: Muhammad Azmi Umer, Khurum Nazir Junejo, Muhammad Taha Jilani, Aditya
P. Mathur
- Abstract要約: 機械学習の手法は、サイバー攻撃に耐性のある産業制御システムの設計に応用されている。
本調査では,侵入と異常検出に用いる機械学習の4種類の手法に着目した。
- 参考スコア(独自算出の注目度): 6.7318392467856025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods from machine learning are being applied to design Industrial Control
Systems resilient to cyber-attacks. Such methods focus on two major areas: the
detection of intrusions at the network-level using the information acquired
through network packets, and detection of anomalies at the physical process
level using data that represents the physical behavior of the system. This
survey focuses on four types of methods from machine learning in use for
intrusion and anomaly detection, namely, supervised, semi-supervised,
unsupervised, and reinforcement learning. Literature available in the public
domain was carefully selected, analyzed, and placed in a 7-dimensional space
for ease of comparison. The survey is targeted at researchers, students, and
practitioners. Challenges associated in using the methods and research gaps are
identified and recommendations are made to fill the gaps.
- Abstract(参考訳): 機械学習の手法は、サイバー攻撃に耐性のある産業制御システムの設計に応用されている。
このような手法は,ネットワークパケットを通じて取得した情報を用いたネットワークレベルでの侵入検出と,システムの物理的挙動を表すデータを用いた物理プロセスレベルでの異常検出という2つの主要な領域に焦点をあてる。
本調査では,侵入や異常検出に用いる機械学習から,教師付き,半教師付き,教師なし,強化学習の4種類の手法に焦点を当てた。
パブリックドメインで利用可能な文献を慎重に選択し、分析し、7次元空間に配置し、比較しやすくした。
調査対象は研究者、学生、実践者である。
方法と研究ギャップの使用に関する課題を特定し,そのギャップを埋めるために推奨する。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Enhancing Automata Learning with Statistical Machine Learning: A Network Security Case Study [4.2751988244805466]
本稿では,ネットワークトラヒックデータから状態マシンを抽出するために,オートマチック学習を用いる。
我々は,産業パートナーのRabbitRun Technologiesが開発した商用ネットワーク侵入検知システムに適用する。
我々の手法は、学習された状態マシンの状態数と遷移を平均67.5%削減する。
論文 参考訳(メタデータ) (2024-05-18T02:10:41Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Weakly Supervised Object Localization and Detection: A Survey [145.5041117184952]
オブジェクトのローカライゼーションと検出は、新しい世代のコンピュータビジョンシステムを開発する上で重要な役割を果たす。
本稿では,(1)古典的モデル,(2)既成の深層ネットワークの特徴表現を用いたアプローチ,(3)ディープラーニングのみに基づくアプローチ,(4)この分野で広く利用されている公開データセットと標準評価指標についてレビューする。
この分野における重要な課題、この分野の開発履歴、各カテゴリーの手法の利点/欠点、異なるカテゴリーの方法間の関係、弱い監督対象のローカリゼーションおよび検出方法の適用、およびこの研究分野の開発をさらに促進するための潜在的な将来の方向性について議論します。
論文 参考訳(メタデータ) (2021-04-16T06:44:50Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z) - Machine Learning Applications in Misuse and Anomaly Detection [0.0]
機械学習とデータマイニングアルゴリズムは侵入検知システムの設計において重要な役割を果たす。
ネットワークにおける攻撃検知に対する彼らのアプローチに基づいて、侵入検知システムは2つのタイプに大別できる。
誤用検知システムにおいて、ネットワーク内のアクティビティのシーケンスが既知のアタックシグネチャと一致する場合、システム内のアタックを検出する。
一方, 異常検出手法では, システム内の異常状態は, システムの状態遷移と正常状態との有意差に基づいて同定される。
論文 参考訳(メタデータ) (2020-09-10T19:52:00Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。