論文の概要: MetaVA: Curriculum Meta-learning and Pre-fine-tuning of Deep Neural
Networks for Detecting Ventricular Arrhythmias based on ECGs
- arxiv url: http://arxiv.org/abs/2202.12450v1
- Date: Fri, 25 Feb 2022 01:26:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 14:13:10.925265
- Title: MetaVA: Curriculum Meta-learning and Pre-fine-tuning of Deep Neural
Networks for Detecting Ventricular Arrhythmias based on ECGs
- Title(参考訳): MetaVA:心電図に基づく心室不整脈検出のための深部ニューラルネットワークのカリキュラムメタラーニングと事前調整
- Authors: Wenrui Zhang, Shijia Geng, Zhaoji Fu, Linlin Zheng, Chenyang Jiang,
Shenda Hong
- Abstract要約: 心室不整脈(VA)は突然の心臓死の主な原因である。
グループレベルの多様性を解決するために,カリキュラム学習法(CL)を用いたモデル非依存メタラーニング(MAML)を提案する。
利用可能なECGデータセットを3つ組み合わせて実験を行った。
- 参考スコア(独自算出の注目度): 9.600976281032862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ventricular arrhythmias (VA) are the main causes of sudden cardiac death.
Developing machine learning methods for detecting VA based on
electrocardiograms (ECGs) can help save people's lives. However, developing
such machine learning models for ECGs is challenging because of the following:
1) group-level diversity from different subjects and 2) individual-level
diversity from different moments of a single subject. In this study, we aim to
solve these problems in the pre-training and fine-tuning stages. For the
pre-training stage, we propose a novel model agnostic meta-learning (MAML) with
curriculum learning (CL) method to solve group-level diversity. MAML is
expected to better transfer the knowledge from a large dataset and use only a
few recordings to quickly adapt the model to a new person. CL is supposed to
further improve MAML by meta-learning from easy to difficult tasks. For the
fine-tuning stage, we propose improved pre-fine-tuning to solve
individual-level diversity. We conduct experiments using a combination of three
publicly available ECG datasets. The results show that our method outperforms
the compared methods in terms of all evaluation metrics. Ablation studies show
that MAML and CL could help perform more evenly, and pre-fine-tuning could
better fit the model to training data.
- Abstract(参考訳): 心室不整脈(VA)は突然の心臓死の主な原因である。
心電図(ECG)に基づくVA検出のための機械学習手法の開発は、人々の命を救うのに役立つ。
しかし、ECGのためのこのような機械学習モデルの開発は、以下の理由により困難である。
1)異なる被験者と集団レベルの多様性
2) 1つの主題の異なるモーメントからの個人レベルの多様性。
本研究では,これらの課題を事前学習と微調整の段階で解決することを目的とする。
事前学習段階において,グループレベルの多様性を解決するために,カリキュラム学習(CL)法を用いたモデル非依存メタラーニング(MAML)を提案する。
MAMLは、大きなデータセットからより優れた知識を転送し、モデルを新しい人に迅速に適応させるために、わずか数レコードを使用すると期待されている。
CLは、メタラーニングによって、簡単なタスクから難しいタスクまで、MAMLをさらに改善する予定である。
微調整の段階では,個別レベルの多様性を解決するために,事前調整の改善を提案する。
利用可能なECGデータセットを3つ組み合わせて実験を行った。
その結果,提案手法はすべての評価指標において比較手法よりも優れていた。
アブレーションによる研究によると、MAMLとCLはより均一に機能し、事前調整はモデルをトレーニングデータに適合させる可能性がある。
関連論文リスト
- Multi-omics data integration for early diagnosis of hepatocellular carcinoma (HCC) using machine learning [8.700808005009806]
異なるモードのマルチクラスデータの遅延統合が可能なアンサンブル機械学習アルゴリズムの性能を比較した。
PB-MVBoostとAdaboostとソフト投票という2つの強化された方法が、全体的な最高のパフォーマンスモデルであった。
論文 参考訳(メタデータ) (2024-09-20T09:38:02Z) - Meta-Learned Modality-Weighted Knowledge Distillation for Robust Multi-Modal Learning with Missing Data [26.81952369462594]
マルチモーダル学習では、いくつかのモダリティは他のモダリティよりも影響を受けており、それらの欠如は分類・分類精度に大きな影響を及ぼす可能性がある。
本稿では,メタ学習型モダリティ重み付き知識蒸留(MetaKD)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-12T04:18:10Z) - Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification [8.975676404678374]
低データ体制下で訓練されたモデルの性能と一般化能力を改善するための戦略を提案する。
提案手法は、自己教師付き学習環境において学習した特徴をアンタングル化して、下流タスクの表現の堅牢性を向上する事前学習段階から開始する。
次に、メタファインニングのステップを導入し、メタトレーニングとメタテストフェーズの関連クラスを活用するが、レベルは変化する。
論文 参考訳(メタデータ) (2024-03-26T09:36:20Z) - LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery [57.358568111574314]
患者のデータのプライバシは、モデル更新時に古いデータの可用性を制限することが多い。
CL研究は外科領域で2つの重要な問題を見落としていた。
本稿では,多モーダル大規模言語モデル (LLM) と適応重み付け手法を用いて,これらの問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-02-26T15:35:24Z) - MELEP: A Novel Predictive Measure of Transferability in Multi-Label ECG Diagnosis [1.3654846342364306]
本稿では,事前学習したモデルから下流のECG診断タスクへの知識伝達の有効性を推定する手段であるMELEPを紹介する。
実験により、MELEPは、小・不均衡のECGデータに基づいて、事前学習した畳み込みと繰り返しの深部ニューラルネットワークの性能を予測できることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:57:10Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
本研究では,グラフ畳み込みネットワーク(GCN)を導入し,相関行列として各カテゴリ間の先行的共起を多ラベル分類のためのディープラーニングモデルに活用する。
本稿では,GCNからの予測を融合モデルからの予測の補完情報とみなすグラフ・アンサンブル学習モデルを提案する。
論文 参考訳(メタデータ) (2023-07-04T13:19:57Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
論文 参考訳(メタデータ) (2022-06-24T08:16:01Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。