論文の概要: Beyond Ans\"atze: Learning Quantum Circuits as Unitary Operators
- arxiv url: http://arxiv.org/abs/2203.00601v1
- Date: Tue, 1 Mar 2022 16:40:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-02 15:38:13.856446
- Title: Beyond Ans\"atze: Learning Quantum Circuits as Unitary Operators
- Title(参考訳): 量子回路をユニタリ演算子として学ぶAns\atze
- Authors: B\'alint M\'at\'e, Bertrand Le Saux, Maxwell Henderson
- Abstract要約: We run gradient-based optimization in the Lie algebra $mathfrak u(2N)$。
我々は、$U(2N)$は、アンザッツによって誘導される検索空間よりも一般的であるだけでなく、古典的なコンピュータでの作業が容易であると主張する。
- 参考スコア(独自算出の注目度): 30.5744362478158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the advantages of optimizing quantum circuits on $N$
wires as operators in the unitary group $U(2^N)$. We run gradient-based
optimization in the Lie algebra $\mathfrak u(2^N)$ and use the exponential map
to parametrize unitary matrices. We argue that $U(2^N)$ is not only more
general than the search space induced by an ansatz, but in ways easier to work
with on classical computers. The resulting approach is quick, ansatz-free and
provides an upper bound on performance over all ans\"atze on $N$ wires.
- Abstract(参考訳): 本稿では、ユニタリ群$U(2^N)$の演算子として、$N$ワイヤ上で量子回路を最適化する利点について検討する。
リー代数 $\mathfrak u(2^n)$ で勾配に基づく最適化を行い、指数写像を用いてユニタリ行列をパラメトリズする。
u(2^n)$ は ansatz によって引き起こされる探索空間よりも一般的であるだけでなく、古典的なコンピュータでの操作が容易であると主張する。
結果として得られるアプローチは高速でアンサッツフリーで、$n$のワイヤ上ですべてのans\"atzeのパフォーマンスの上限を提供する。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss [16.91814406135565]
我々は量子アルゴリズムと下界の体系的な研究を行い、最大で$N$凸、リプシッツ関数を最小化する。
我々は、量子アルゴリズムが$tildeOmega(sqrtNepsilon-2/3)$クエリを1次量子オラクルに取らなければならないことを証明している。
論文 参考訳(メタデータ) (2024-02-20T06:23:36Z) - Fast and Practical Quantum-Inspired Classical Algorithms for Solving
Linear Systems [11.929584800629673]
線形系を解くための高速で実用的な量子インスパイアされた古典的アルゴリズムを提案する。
我々の主な貢献は、線形系を解くために量子に着想を得た古典的アルゴリズムへの重球運動量法の適用である。
論文 参考訳(メタデータ) (2023-07-13T08:46:19Z) - Quantum machine learning with subspace states [8.22379888383833]
量子部分空間状態に基づく量子線型代数の新しいアプローチを導入し,新しい3つの量子機械学習アルゴリズムを提案する。
1つ目は、分布 $Pr[S]= det(X_SX_ST)$ for $|S|=d$ using $O(nd)$ gates and with circuit depth $O(dlog n)$である。
2つ目は、複素行列に対して$mathcalAk$の量子特異値推定アルゴリズムであり、このアルゴリズムの高速化は指数関数的である。
論文 参考訳(メタデータ) (2022-01-31T19:34:47Z) - Asymptotically Optimal Circuit Depth for Quantum State Preparation and
General Unitary Synthesis [24.555887999356646]
この問題は量子アルゴリズム設計、ハミルトニアンシミュレーション、量子機械学習において基本的な重要性を持っているが、その回路深さと大きさの複雑さは、アシラリー量子ビットが利用可能である時点では未解決のままである。
本稿では,$psi_vrangle$を奥行きで作成できる$m$Acillary qubitsを用いた量子回路の効率的な構築について検討する。
我々の回路は決定論的であり、状態を準備し、正確にユニタリを実行し、アシラリー量子ビットを厳密に利用し、深さは幅広いパラメータ状態において最適である。
論文 参考訳(メタデータ) (2021-08-13T09:47:11Z) - Bayesian Optimistic Optimisation with Exponentially Decaying Regret [58.02542541410322]
現在の実用的なBOアルゴリズムは、$mathcalO(fraclogNsqrtN)$から$mathcalO(e-sqrtN)$まで、$N$は評価の数である。
本稿では,boと木に基づく楽観的楽観化の概念を絡み合うことにより,無音環境における後悔を改善できる可能性について検討する。
次数$mathcal O(N-sqrt)で指数的再帰を達成できる最初の実践的手法であるBOOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T13:07:44Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Quantum-classical algorithms for skewed linear systems with optimized
Hadamard test [10.386115383285288]
我々は、過度に決定された場合と過度に決定された場合のスキュード線形系に対するハイブリッド量子古典アルゴリズムについて論じる。
我々の入力モデルは、線形系を定義する行列の列または行が多対数深さの量子回路によって与えられるようなものである。
本稿では,各次元における実時間多対数性を持つ分解線形系の特殊ケースに対するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-28T12:59:27Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
私たちは発見するアルゴリズムを見つけます。
epsilon$-approximate stationary point ($|nabla F(x)|le epsilon$) using
$(epsilon,gamma)$surimateランダムランダムポイント。
ここでの私たちの下限は、ノイズのないケースでも新規です。
論文 参考訳(メタデータ) (2020-06-24T04:41:43Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
エントロピー正則化で最適な輸送を解くには、ベクトルに繰り返し適用される$ntimes n$ kernel matrixを計算する必要がある。
代わりに、$c(x,y)=-logdotpvarphi(x)varphi(y)$ ここで$varphi$は、地上空間から正のorthant $RRr_+$への写像であり、$rll n$である。
論文 参考訳(メタデータ) (2020-06-12T10:21:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。