論文の概要: Responsible-AI-by-Design: a Pattern Collection for Designing Responsible
AI Systems
- arxiv url: http://arxiv.org/abs/2203.00905v1
- Date: Wed, 2 Mar 2022 07:30:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 14:49:02.008445
- Title: Responsible-AI-by-Design: a Pattern Collection for Designing Responsible
AI Systems
- Title(参考訳): 責任AI設計:責任AIシステム設計のためのパターンコレクション
- Authors: Qinghua Lu, Liming Zhu, Xiwei Xu, Jon Whittle
- Abstract要約: 責任あるAIのための多くの倫理規定、原則、ガイドラインが最近発行されている。
本稿では、システムレベルのガイダンスとして、責任あるAIシステムのアーキテクチャをどのように設計するかという、欠落した要素を1つ挙げる。
本稿では、AIシステムに組み込んだデザインパターンを製品として紹介し、責任あるAI設計に貢献する。
- 参考スコア(独自算出の注目度): 12.825892132103236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although AI has significant potential to transform society, there are serious
concerns about its ability to behave and make decisions responsibly. Many
ethical regulations, principles, and guidelines for responsible AI have been
issued recently. However, these principles are high-level and difficult to put
into practice. In the meantime much effort has been put into responsible AI
from the algorithm perspective, but they are limited to a small subset of
ethical principles amenable to mathematical analysis. Responsible AI issues go
beyond data and algorithms and are often at the system-level crosscutting many
system components and the entire software engineering lifecycle. Based on the
result of a systematic literature review, this paper identifies one missing
element as the system-level guidance: how to design the architecture of
responsible AI systems. We present a summary of design patterns that can be
embedded into the AI systems as product features to contribute to
responsible-AI-by-design.
- Abstract(参考訳): AIは社会を変える大きな可能性を秘めているが、その行動と決定を責任を持って行う能力には深刻な懸念がある。
責任あるaiに関する多くの倫理的規則、原則、ガイドラインが最近発行されている。
しかし、これらの原則はハイレベルであり、実行が難しい。
その間、アルゴリズムの観点からは責任あるAIに多くの努力が注がれているが、それらは数学的分析に対処可能な倫理原則のごく一部に限られている。
責任のあるAI問題は、データやアルゴリズムを越えて、多くのシステムコンポーネントとソフトウェアエンジニアリングライフサイクル全体を横断するシステムレベルに置かれることが多い。
体系的な文献レビューの結果に基づき、本論文では、システムレベルのガイダンスとして、責任あるAIシステムのアーキテクチャをどのように設計するかという、欠落した要素を識別する。
本稿では、AIシステムに組み込んだデザインパターンを製品として紹介し、責任あるAI設計に貢献する。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems [0.0]
AI倫理の原則と実践の間にはまだギャップがある。
AI倫理を運用しようとする組織が直面する大きな障害のひとつは、明確に定義された材料スコープの欠如である。
論文 参考訳(メタデータ) (2024-07-07T12:16:01Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Operationalising Responsible AI Using a Pattern-Oriented Approach: A
Case Study on Chatbots in Financial Services [11.33499498841489]
責任AI(Responsible AI)は、人間、社会、環境に利益をもたらす方法でAIシステムを開発し、利用するプラクティスである。
さまざまな責任あるAI原則が最近リリースされたが、これらの原則は非常に抽象的で実用的ではない。
ギャップを埋めるために、パターン指向のアプローチを採用し、責任あるAIパターンカタログを構築します。
論文 参考訳(メタデータ) (2023-01-03T23:11:03Z) - Responsible AI Pattern Catalogue: A Collection of Best Practices for AI
Governance and Engineering [20.644494592443245]
MLR(Multivocal Literature Review)の結果に基づく応答性AIパターンカタログを提案する。
原則やアルゴリズムのレベルにとどまらず、私たちは、AIシステムのステークホルダーが実際に行なえるパターンに注目して、開発済みのAIシステムがガバナンスとエンジニアリングライフサイクル全体を通して責任を負うようにします。
論文 参考訳(メタデータ) (2022-09-12T00:09:08Z) - Towards a Roadmap on Software Engineering for Responsible AI [17.46300715928443]
本稿では,責任あるAIのためのソフトウェア工学のロードマップを作成することを目的とする。
ロードマップは、(i)責任AIシステムのためのマルチレベルガバナンスの確立、(ii)責任AIシステムのためのプロセス指向のプラクティスを取り入れた開発プロセスのセットアップ、(iii)システムレベルのアーキテクチャスタイル、パターン、テクニックを通じて責任AIをAIシステムにバイデザインする構築に焦点を当てている。
論文 参考訳(メタデータ) (2022-03-09T07:01:32Z) - Software Engineering for Responsible AI: An Empirical Study and
Operationalised Patterns [20.747681252352464]
具体的なパターンの形でAI倫理原則を運用可能なテンプレートを提案する。
これらのパターンは、責任あるAIシステムの開発を容易にする具体的な、運用されたガイダンスを提供する。
論文 参考訳(メタデータ) (2021-11-18T02:18:27Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。