論文の概要: On the relevance of language in speaker recognition
- arxiv url: http://arxiv.org/abs/2203.01992v1
- Date: Fri, 4 Mar 2022 10:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-07 16:20:55.108126
- Title: On the relevance of language in speaker recognition
- Title(参考訳): 話者認識における言語の役割について
- Authors: Antonio Satue-Villar, Marcos Faundez-Zanuy
- Abstract要約: 両言語の間には顕著な違いがある。
本稿では,スペイン語とカタルーニャ語という2つの言語で,バイリンガル話者集合(49)から収集した新しいデータベースについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a new database collected from a bilingual speakers set
(49), in two different languages: Spanish and Catalan. Phonetically there are
significative differences between both languages. These differences have let us
to establish several conclusions on the relevance of language in speaker
recognition, using two methods: vector quantization and covariance matrices
- Abstract(参考訳): 本稿では、2つの異なる言語(スペイン語とカタルーニャ語)のバイリンガル話者集合(49)から収集した新しいデータベースを提案する。
両言語の間には顕著な違いがある。
これらの違いは、話者認識における言語関係に関するいくつかの結論を、ベクトル量子化と共分散行列という2つの方法を用いて定めている。
関連論文リスト
- Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
言語間アライメントは多言語言語モデルにおける言語間の表現の有意義な類似性である。
本研究は,言語間アライメントの向上,手法の分類,分野全体からの洞察の要約といった手法の文献を調査する。
論文 参考訳(メタデータ) (2024-04-09T11:39:53Z) - A Computational Model for the Assessment of Mutual Intelligibility Among
Closely Related Languages [1.5773159234875098]
密接に関連する言語は、ある言語の話者が積極的に学習することなく他の言語の話者を理解することができる言語類似性を示す。
相互の知性は程度によって異なり、典型的には精神言語実験でテストされる。
本稿では,人間による言語学習の認知過程を近似するために,線形識別学習システムを用いたコンピュータ支援手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T11:32:13Z) - MoLE : Mixture of Language Experts for Multi-Lingual Automatic Speech
Recognition [12.23416994447554]
我々はMixture-of-Language-Expert(MoLE)という多言語音声認識ネットワークを提案する。
MoLEは、任意の言語で入力された音声から言語表現を分析し、軽量な言語トークン化器で言語固有の専門家を活性化する。
信頼性に基づいて、アクティベートされた専門家と言語に依存しない専門家を集約し、言語条件の埋め込みを表現する。
論文 参考訳(メタデータ) (2023-02-27T13:26:17Z) - Multilingual Representation Distillation with Contrastive Learning [20.715534360712425]
コントラスト学習を多言語表現蒸留に統合し,並列文の品質評価に利用する。
我々は,多言語類似性探索とコーパスフィルタリングタスクによるアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2022-10-10T22:27:04Z) - Investigating the Impact of Cross-lingual Acoustic-Phonetic Similarities
on Multilingual Speech Recognition [31.575930914290762]
言語間音響-音声の類似性を調べるために, 新たなデータ駆動手法を提案する。
ディープニューラルネットワークは、異なる音響モデルからの分布を直接的に同等の形式に変換するためのマッピングネットワークとして訓練されている。
モノリンガルに比べて8%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2022-07-07T15:55:41Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Efficient Weight factorization for Multilingual Speech Recognition [67.00151881207792]
エンドツーエンドの多言語音声認識は、多くの言語を含む合成音声コーパスで単一のモデルトレーニングを使用する。
トレーニングデータの各言語には異なる特徴があるため、共有ネットワークは、すべての言語を同時に最適化するのに苦労する可能性がある。
ニューラルネットワークのコア動作をターゲットとした新しい多言語アーキテクチャを提案する:線形変換関数。
論文 参考訳(メタデータ) (2021-05-07T00:12:02Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z) - Cross-modal Speaker Verification and Recognition: A Multilingual
Perspective [29.314358875442778]
本研究の目的は,「対面音声アソシエーション言語は独立したのか?」と「話者は話し言葉を認識しているのか?」という,密接に関連する2つの問いに答えることである。
これに答えるために、オンラインにアップロードされたさまざまなビデオから3ドル(約3,300円)の言語アノテーションを抽出した154ドル(約1,300円)の音声クリップを含むマルチ言語音声画像データセットを収集した。
論文 参考訳(メタデータ) (2020-04-28T19:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。