Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions
- URL: http://arxiv.org/abs/2203.02605v3
- Date: Sat, 11 May 2024 09:49:02 GMT
- Title: Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions
- Authors: Nina Deliu, Joseph Jay Williams, Bibhas Chakraborty,
- Abstract summary: reinforcement learning (RL) has acquired a prominent position in health-related sequential decision-making problems.
However, its real-life application is still limited and its potential is still to be realized.
- Score: 6.9295094033607825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, reinforcement learning (RL) has acquired a prominent position in health-related sequential decision-making problems, gaining traction as a valuable tool for delivering adaptive interventions (AIs). However, in part due to a poor synergy between the methodological and the applied communities, its real-life application is still limited and its potential is still to be realized. To address this gap, our work provides the first unified technical survey on RL methods, complemented with case studies, for constructing various types of AIs in healthcare. In particular, using the common methodological umbrella of RL, we bridge two seemingly different AI domains, dynamic treatment regimes and just-in-time adaptive interventions in mobile health, highlighting similarities and differences between them and discussing the implications of using RL. Open problems and considerations for future research directions are outlined. Finally, we leverage our experience in designing case studies in both areas to showcase the significant collaborative opportunities between statistical, RL, and healthcare researchers in advancing AIs.
Related papers
- Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
Deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments.
DRL faces certain limitations, including low sample efficiency and poor generalization.
We present how to leverage generative AI (GAI) to address these issues and enhance the performance of DRL algorithms.
arXiv Detail & Related papers (2024-05-31T01:25:40Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - A Meta-Learning Method for Estimation of Causal Excursion Effects to Assess Time-Varying Moderation [0.0]
This paper revisits the estimation of causal excursion effects from a meta-learner perspective.
We present the properties of the proposed estimators and compare them both theoretically and through extensive simulations.
The results show relative efficiency gains and support the suggestion of a doubly robust alternative to existing methods.
arXiv Detail & Related papers (2023-06-28T15:19:33Z) - Who Goes First? Influences of Human-AI Workflow on Decision Making in
Clinical Imaging [24.911186503082465]
This study explores the effects of providing AI assistance at the start of a diagnostic session in radiology versus after the radiologist has made a provisional decision.
We found that participants who are asked to register provisional responses in advance of reviewing AI inferences are less likely to agree with the AI regardless of whether the advice is accurate and, in instances of disagreement with the AI, are less likely to seek the second opinion of a colleague.
arXiv Detail & Related papers (2022-05-19T16:59:25Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z) - A unified survey of treatment effect heterogeneity modeling and uplift
modeling [24.803992990503186]
In recent years, a need for estimating the heterogeneous treatment effects conditioning on the different characteristics of individuals has emerged.
To meet the need, researchers and practitioners from different communities have developed algorithms.
We provide a unified survey of these two seemingly disconnected but closely related approaches under the potential outcome framework.
arXiv Detail & Related papers (2020-07-14T02:16:02Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.