論文の概要: CoNIC Solution
- arxiv url: http://arxiv.org/abs/2203.03415v1
- Date: Fri, 4 Mar 2022 06:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 12:06:52.107561
- Title: CoNIC Solution
- Title(参考訳): コーニック溶液
- Authors: Wenhua Zhang
- Abstract要約: 本稿では,CoNICコンペティションで使用する2段階パイプラインを提案する。
元のベースライン法と類似したモデル: HoVerNet をセグメント化モデルとして採用し,分類結果を微調整する新しい分類モデルを開発する。
- 参考スコア(独自算出の注目度): 3.0895898827758552
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nuclei segmentation and classification has been a challenge due to the high
inter-class similarity and intra-class variability. Thus, a large-scale
annotation and a specially-designed algorithm are needed to solve this problem.
Lizard is therefore a great promotion in this area, containing around half a
million nuclei annotated. In this paper, we propose a two-stage pipeline used
in the CoNIC competition, which achieves much better results than the baseline
method. We adopt a similar model as the original baseline method: HoVerNet, as
the segmentaion model and then develop a new classification model to fine-tune
the classification results. Code for this method will be made public soon. This
is a conic solution in testing.
- Abstract(参考訳): 核のセグメンテーションと分類は、クラス間類似度とクラス内変異性が高いため、課題となっている。
この問題を解決するには,大規模アノテーションと特別に設計されたアルゴリズムが必要である。
そのため、リザードはこの領域では大きな推進であり、約50万個の核に注釈を付けた。
本稿では,CoNICコンペティションで使用される2段階パイプラインを提案する。
元のベースライン法と類似したモデル: HoVerNet をセグメント化モデルとして採用し,分類結果を微調整する新しい分類モデルを開発する。
このメソッドのコードは近々公開される予定だ。
これはテストにおける円錐形のソリューションです。
関連論文リスト
- Class and Region-Adaptive Constraints for Network Calibration [17.583536041845402]
本稿では,異なるカテゴリや対象領域がもたらす固有の課題を考慮したセグメンテーションネットワークのキャリブレーション手法を提案する。
手動で最適なペナルティウェイトを見つけることは不可能であり、最適化プロセスを妨げる可能性がある。
本稿では,クラスと地域適応制約(CRaC)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-19T02:19:57Z) - A three in one bottom-up framework for simultaneous semantic
segmentation, instance segmentation and classification of multi-organ nuclei
in digital cancer histology [3.2228025627337864]
デジタル組織学における核の同時セグメンテーションと分類は、コンピュータによるがん診断において重要な役割を担っている。
最も達成されたバイナリとマルチクラスのPanoptic Quality (PQ)は、それぞれ0.68 bPQと0.49 mPQである。
この作業は、以前のモデルを同時インスタンスのセグメンテーションと分類に拡張します。
論文 参考訳(メタデータ) (2023-08-22T04:10:14Z) - Efficient Subclass Segmentation in Medical Images [3.383033695275859]
コストを削減するための実現可能な方法の1つは、補体として限定されたきめ細かいアノテーションを使用しながら、粗い粒度のスーパークラスラベルでアノテートすることである。
セマンティックセグメンテーションタスクにおけるきめ細かいサブクラスの効率的な学習に関する研究が不足している。
提案手法は,サブクラスアノテーションが限定された完全サブクラスアノテーションと十分なスーパークラスアノテーションで訓練されたモデルに匹敵する精度を実現する。
論文 参考訳(メタデータ) (2023-07-01T07:39:08Z) - A Novel Dataset and a Deep Learning Method for Mitosis Nuclei
Segmentation and Classification [10.960222475663006]
ミトコンドリア核数(Mitosis nuclear count)は乳癌の病理診断における重要な指標の1つである。
そこで本研究では,SCMitosisという2段階のミトーシスセグメンテーションと分類法を提案する。
提案モデルはICPR 2012データセット上で検証され、最高Fスコア値は0.8687である。
論文 参考訳(メタデータ) (2022-12-27T08:12:42Z) - Which Pixel to Annotate: a Label-Efficient Nuclei Segmentation Framework [70.18084425770091]
ディープニューラルネットワークは、H&E染色病理像の核インスタンスセグメンテーションに広く応用されている。
通常、類似したパターンと冗長なパターンを含む核画像のデータセットに全てのピクセルをラベル付けするのは非効率で不要である。
そこで本研究では,アノテートするイメージパッチを数個だけ選択し,選択したサンプルからトレーニングセットを増強し,半教師付きで核分割を実現する,新しいフル核分割フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-20T14:53:26Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
CIL(Class-incremental Learning)は、少数のクラス(ベースクラス)から始まる設定で広く研究されている。
我々は、多数のベースクラスで事前訓練された強力なモデルから始まるCILの実証済み実世界の設定について検討する。
提案手法は、解析されたCIL設定すべてに頑健で一般化されている。
論文 参考訳(メタデータ) (2022-04-07T17:58:07Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
本研究は,マルチラベル分類を管理するための新しいアンサンブル手法を提案する。
提案手法のコアは,Adamグラデーション最適化アプローチの変種で訓練された,ゲート再帰単位と時間畳み込みニューラルネットワークの組み合わせである。
論文 参考訳(メタデータ) (2021-10-09T00:00:16Z) - GistNet: a Geometric Structure Transfer Network for Long-Tailed
Recognition [95.93760490301395]
長い尾の認識は、クラスごとのサンプル数が非常にアンバランスである問題です。
GistNetは、クラスジオメトリをエンコードするために分類パラメータのコンステレーションを使用して、この目標をサポートするように提案されている。
新しい学習アルゴリズムがGeometrIc Structure Transfer (GIST) に提案され、クラスバランスとランダムサンプリングを組み合わせた損失関数の組み合わせにより、一般的なクラスに過度に適合することは幾何パラメータに制限されるが、人気クラスから少数ショットクラスへのクラス幾何学の転送に利用される。
論文 参考訳(メタデータ) (2021-05-01T00:37:42Z) - A Multiple Classifier Approach for Concatenate-Designed Neural Networks [13.017053017670467]
私たちは、ネットワークセット間で生成された特徴を収集する分類器の設計を与えます。
我々はL2正規化法を用いて、Softmax Denseの代わりに分類スコアを得る。
その結果、提案された分類器は実験ケースの精度を向上させることができる。
論文 参考訳(メタデータ) (2021-01-14T04:32:40Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
最先端のセマンティックセグメンテーション手法は、良い結果を得るために十分なラベル付きデータを必要とする。
少数のラベル付きサポートサンプルを持つ新しいクラスに迅速に適応するモデルを学習することで,この問題に対処するためのショットセグメンテーションが提案されている。
これらのフレームワークは、高レベルのセマンティック情報の不適切な使用により、目に見えないクラスにおける一般化能力の低下という課題に直面している。
論文 参考訳(メタデータ) (2020-08-04T10:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。