Bayesian Spatial Predictive Synthesis
- URL: http://arxiv.org/abs/2203.05197v4
- Date: Sat, 25 Jan 2025 14:45:16 GMT
- Title: Bayesian Spatial Predictive Synthesis
- Authors: Danielle Cabel, Shonosuke Sugasawa, Masahiro Kato, Kosaku Takanashi, Kenichiro McAlinn,
- Abstract summary: spatial dependence is a prevalent and critical issue in spatial data analysis and prediction.
We propose a novel Bayesian ensemble methodology that captures spatially-varying model uncertainty.
We show that our method provides a finite sample theoretical guarantee for its predictive performance.
- Score: 8.66529877559667
- License:
- Abstract: Due to spatial dependence -- often characterized as complex and non-linear -- model misspecification is a prevalent and critical issue in spatial data analysis and prediction. As the data, and thus model performance, is heterogeneous, typical model selection and ensemble methods that assume homogeneity are not suitable. We address the issue of model uncertainty for spatial data by proposing a novel Bayesian ensemble methodology that captures spatially-varying model uncertainty and performance heterogeneity of multiple spatial predictions, and synthesizes them for improved predictions, which we call Bayesian spatial predictive synthesis. Our proposal is defined by specifying a latent factor spatially-varying coefficient model as the synthesis function, which enables spatial characteristics of each model to be learned and ensemble coefficients to vary over regions to achieve flexible predictions. We derive our method from the theoretically best approximation of the data generating process, and show that it provides a finite sample theoretical guarantee for its predictive performance, specifically that the predictions are exact minimax. Two MCMC strategies are implemented for full uncertainty quantification, as well as a variational inference strategy for fast point inference. We also extend the estimation strategy for general responses. Through simulation examples and two real data applications in real estate and ecology, our proposed Bayesian spatial predictive synthesis outperforms standard spatial models and ensemble methods, and advanced machine learning methods, in terms of predictive accuracy and uncertainty quantification, while maintaining interpretability of the prediction mechanism.
Related papers
- A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Spatially-Aware Diffusion Models with Cross-Attention for Global Field Reconstruction with Sparse Observations [1.371691382573869]
We develop and enhance score-based diffusion models in field reconstruction tasks.
We introduce a condition encoding approach to construct a tractable mapping mapping between observed and unobserved regions.
We demonstrate the ability of the model to capture possible reconstructions and improve the accuracy of fused results.
arXiv Detail & Related papers (2024-08-30T19:46:23Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous process conditioned on the realization of a random intensity function.
Existing implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions.
arXiv Detail & Related papers (2023-06-11T19:48:39Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
This paper presents a fast algorithm for estimating hidden states of Bayesian state space models.
After pretraining, finding the posterior distribution for any dataset takes from hundredths to tenths of a second.
arXiv Detail & Related papers (2022-10-13T16:37:05Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools.
The SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences and also relevant similarities.
The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.
arXiv Detail & Related papers (2021-11-13T01:50:36Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Latent Space Model for Higher-order Networks and Generalized Tensor
Decomposition [18.07071669486882]
We introduce a unified framework, formulated as general latent space models, to study complex higher-order network interactions.
We formulate the relationship between the latent positions and the observed data via a generalized multilinear kernel as the link function.
We demonstrate the effectiveness of our method on synthetic data.
arXiv Detail & Related papers (2021-06-30T13:11:17Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.