Analysis of Multipartite Entanglement Distribution using a Central
Quantum-Network Node
- URL: http://arxiv.org/abs/2203.05517v2
- Date: Mon, 6 Feb 2023 13:39:02 GMT
- Title: Analysis of Multipartite Entanglement Distribution using a Central
Quantum-Network Node
- Authors: Guus Avis, Filip Rozp\k{e}dek and Stephanie Wehner
- Abstract summary: We study the performance of distributing multipartite entangled states in a quantum network through the use of a central node.
Specifically, we consider the scenario where the multipartite entangled state is first prepared locally at a central node, and then transmitted to the end nodes of the network through quantum teleportation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the performance (rate and fidelity) of distributing multipartite
entangled states in a quantum network through the use of a central node.
Specifically, we consider the scenario where the multipartite entangled state
is first prepared locally at a central node, and then transmitted to the end
nodes of the network through quantum teleportation. As our first result, we
present leading-order analytical expressions and lower bounds for both the rate
and fidelity at which a specific class of multipartite entangled states, namely
Greenberger-Horne-Zeilinger (GHZ) states, are distributed. Our analytical
expressions for the fidelity accurately account for time-dependent depolarizing
noise encountered by individual quantum bits while stored in quantum memory, as
verified using Monte Carlo simulations. As our second result, we compare the
performance to the case where the central node is an entanglement switch and
the GHZ state is created by the end nodes in a distributed fashion. Apart from
these two results, we outline how the teleportation-based scheme could be
physically implemented using trapped ions or nitrogen-vacancy centers in
diamond.
Related papers
- Deterministic multipartite entanglement via fractional state transfer across quantum networks [0.0]
We propose a fractional quantum state transfer, in which the excitation of an emitter is partially transmitted through the quantum communication channel.
We show that genuine multipartite entangled states can be faithfully prepared within current experimental platforms.
arXiv Detail & Related papers (2024-08-02T10:59:16Z) - Entanglement distribution based on quantum walk in arbitrary quantum networks [6.37705397840332]
We develop a series of scheme for generating high-dimensional entangled states via quantum walks with multiple coins or single coin.
We also give entanglement distribution schemes on arbitrary quantum networks according to the above theoretical framework.
Our work can serve as a building block for constructing larger and more complex quantum networks.
arXiv Detail & Related papers (2024-07-05T08:26:41Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Strong entanglement distribution of quantum networks [3.6720510088596297]
Large-scale quantum networks have been employed to overcome practical constraints of transmissions and storage for single entangled systems.
We show any connected network consisting of generalized EPR states and GHZ states satisfies strong CKW monogamy inequality in terms of bipartite entanglement measure.
We classify entangled quantum networks by distinguishing network configurations under local unitary operations.
arXiv Detail & Related papers (2021-09-27T08:45:18Z) - Distributing Multipartite Entanglement over Noisy Quantum Networks [0.0]
A quantum internet aims at harnessing networked quantum technologies, namely by distributing bipartite entanglement between distant nodes.
We present an algorithm for generating multipartite entanglement between different nodes of a quantum network with noisy quantum repeaters and imperfect quantum memories.
arXiv Detail & Related papers (2021-03-26T22:48:05Z) - Deterministic distribution of multipartite entanglement and steering in
a quantum network by separable states [14.388536745297214]
Einstein-Podolsky-Rosen entanglement and steering play important roles in quantum-enhanced communication protocols.
We experimentally demonstrate the deterministic distribution of two- and three-mode Gaussian entanglement and steering by transmitting separable states in a network consisting of a quantum server and multiple users.
arXiv Detail & Related papers (2021-01-05T09:15:54Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.