論文の概要: Hyperbolic Image Segmentation
- arxiv url: http://arxiv.org/abs/2203.05898v1
- Date: Fri, 11 Mar 2022 13:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-14 13:04:37.245302
- Title: Hyperbolic Image Segmentation
- Title(参考訳): 双曲画像分割
- Authors: Mina GhadimiAtigh, Julian Schoep, Erman Acar, Nanne van Noord, Pascal
Mettes
- Abstract要約: 双曲空間における階層的ピクセルレベル分類の抽出可能な定式化を提案する。
Hyperbolic Imageは、セグメンテーションの新たな可能性と実用的メリットを開放する。
- 参考スコア(独自算出の注目度): 16.50554261593531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For image segmentation, the current standard is to perform pixel-level
optimization and inference in Euclidean output embedding spaces through linear
hyperplanes. In this work, we show that hyperbolic manifolds provide a valuable
alternative for image segmentation and propose a tractable formulation of
hierarchical pixel-level classification in hyperbolic space. Hyperbolic Image
Segmentation opens up new possibilities and practical benefits for
segmentation, such as uncertainty estimation and boundary information for free,
zero-label generalization, and increased performance in low-dimensional output
embeddings.
- Abstract(参考訳): イメージセグメンテーションの現在の標準は、線形超平面を通してユークリッド出力の埋め込み空間においてピクセルレベルの最適化と推論を行うことである。
本研究では,双曲多様体がイメージセグメンテーションの代替となることを示すとともに,双曲空間における階層的ピクセルレベルの分類の抽出可能な定式化を提案する。
双曲像のセグメンテーションは、自由でゼロラベルの一般化のための不確実性推定や境界情報、低次元出力埋め込みの性能向上など、セグメンテーションの新たな可能性と実用的な利点を開く。
関連論文リスト
- Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
画像の領域分割のためのピクセルレベルのクラスタリングフレームワークを,地上の真理アノテーションを使わずに提案する。
また、各スーパーピクセル間の一貫性、隣接するスーパーピクセル間の相似性/相似性、画像間の構造的類似性を利用したトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-24T23:06:29Z) - From Explanations to Segmentation: Using Explainable AI for Image
Segmentation [1.8581514902689347]
我々は、説明可能なAI(XAI)コミュニティの進歩の上に構築し、ピクセル単位のバイナリセグメンテーションを抽出する。
我々は,既存のU-Netセグメンテーションアーキテクチャと比較して,同様の結果が得られることを示す。
トレーニングサンプルは画像レベルでのみラベル付けする必要があるため,提案手法は弱教師付きでトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-01T10:26:10Z) - Superpixel-guided Discriminative Low-rank Representation of
Hyperspectral Images for Classification [49.32130776974202]
SP-DLRRは2つのモジュール、すなわち分類誘導スーパーピクセルセグメンテーションと識別低ランク表現で構成されている。
3つのベンチマークデータセットの実験結果から,SP-DLRRが最先端手法よりも有意な優位性を示した。
論文 参考訳(メタデータ) (2021-08-25T10:47:26Z) - Semi-supervised Semantic Segmentation with Directional Context-aware
Consistency [66.49995436833667]
我々は、ラベル付きデータの小さなセットに、全くラベル付けされていない画像のより大きなコレクションを提供する半教師付きセグメンテーション問題に焦点をあてる。
好ましいハイレベル表現は、自己認識を失わずにコンテキスト情報をキャプチャするべきである。
我々は,DCロス(Directional Contrastive Loss)を画素対ピクセルの整合性を達成するために提示する。
論文 参考訳(メタデータ) (2021-06-27T03:42:40Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
本研究では,オブジェクトとシーンの微細な高画質画像分割のための新しい手法を提案する。
形態素画像処理技術による拡張と浸食に着想を得て,画素レベルのセグメンテーション問題をスクイーズ対象境界として扱う。
提案手法は,COCO,Cityscapesのインスタンス・セグメンテーション・セグメンテーション・セグメンテーションにおいて大きく向上し,同一条件下での精度・速度ともに従来のPointRendよりも優れていた。
論文 参考訳(メタデータ) (2021-05-25T04:58:51Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
セマンティックセグメンテーションのためのトランスフォーマーモデルであるSegmenterを紹介します。
最近のViT(Vision Transformer)上に構築し,セマンティックセグメンテーションに拡張する。
これは、挑戦的なADE20Kデータセット上でのアートの状態を上回り、Pascal ContextとCityscapesでオンパーを実行する。
論文 参考訳(メタデータ) (2021-05-12T13:01:44Z) - All you need are a few pixels: semantic segmentation with PixelPick [30.234492042103966]
そこで本研究では,十分なセグメンテーション性能を達成するためには,いくつかの精細なピクセルラベルだけでよいことを示す。
我々は,この現象をpixelpickと呼ばれるアクティブ学習フレームワークで活用し,ラベリングコストを劇的に削減する方法を実証する。
論文 参考訳(メタデータ) (2021-04-13T17:55:33Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization [80.55951673479237]
本研究では,空気シーン分類におけるニュアンス変動を解決するために,新しい不変な深部圧縮性共分散プール (IDCCP) を提案する。
本研究では,公開空間画像データセットに関する広範な実験を行い,最先端の手法と比較して,この手法の優位性を実証する。
論文 参考訳(メタデータ) (2020-11-11T11:13:07Z) - Geodesic Paths for Image Segmentation with Implicit Region-based
Homogeneity Enhancement [19.309722425910465]
アイコナル偏微分方程式(PDE)に基づくフレキシブル・インタラクティブな画像分割モデルを提案する。
提案手法は,最先端の最小経路に基づく画像分割手法よりも優れている。
論文 参考訳(メタデータ) (2020-08-16T13:29:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。