論文の概要: Deep Learning the Shape of the Brain Connectome
- arxiv url: http://arxiv.org/abs/2203.06122v1
- Date: Sun, 6 Mar 2022 17:51:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-20 23:09:31.769603
- Title: Deep Learning the Shape of the Brain Connectome
- Title(参考訳): 脳のコネクトームの形を深く学習する
- Authors: Haocheng Dai, Martin Bauer, P. Thomas Fletcher, Sarang C. Joshi
- Abstract要約: 私たちは、ディープニューラルネットワークを使って脳の測地線を推定する方法を初めて示します。
提案手法は, 測地・白色・マター・パスのアライメントにおいて優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 6.165163123577484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To statistically study the variability and differences between normal and
abnormal brain connectomes, a mathematical model of the neural connections is
required. In this paper, we represent the brain connectome as a Riemannian
manifold, which allows us to model neural connections as geodesics. We show for
the first time how one can leverage deep neural networks to estimate a
Riemannian metric of the brain that can accommodate fiber crossings and is a
natural modeling tool to infer the shape of the brain from DWMRI. Our method
achieves excellent performance in geodesic-white-matter-pathway alignment and
tackles the long-standing issue in previous methods: the inability to recover
the crossing fibers with high fidelity.
- Abstract(参考訳): 正常脳コネクトームと異常脳コネクトームの変動性と差異を統計的に研究するには、神経結合の数学的モデルが必要である。
本稿では,脳コネクトームをリーマン多様体として表現し,神経接続を測地線としてモデル化する。
DWMRIから脳の形状を推測するための自然なモデリングツールであり、繊維交差を許容できるリーマン計量を推定するために、ディープニューラルネットワークをどのように活用できるかを初めて示す。
提案手法は, 測地・白色・マター・パスウェイアライメントにおける優れた性能を実現し, 従来手法における長年の課題に対処する。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - A Differentiable Approach to Multi-scale Brain Modeling [3.5874544981360987]
本稿では,脳シミュレータBrainPyを用いたマルチスケール微分脳モデリングワークフローを提案する。
単一ニューロンレベルでは、微分可能なニューロンモデルを実装し、電気生理学的データへの適合を最適化するために勾配法を用いる。
ネットワークレベルでは、生物学的に制約されたネットワークモデルを構築するためにコネクトロミックデータを組み込む。
論文 参考訳(メタデータ) (2024-06-28T07:41:31Z) - D-CoRP: Differentiable Connectivity Refinement for Functional Brain Networks [4.675640373196467]
脳ネットワークの既存のモデルは、通常、脳の領域に焦点を当てたり、脳の結合性の複雑さを見落としたりする。
我々は脳の接続性を改善するための識別可能なモジュールを開発した。
実験の結果,提案手法は様々なベースラインモデルの性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-05-28T23:49:52Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - A computational geometry approach for modeling neuronal fiber pathways [10.741721423684305]
トラクトグラフィーは、脳内の白質経路の幾何学を示す3次元の複雑な神経線維を構成する。
ホワイトマターファイバの接続を容易にすることを目的とした,計算幾何学に基づくトラクトグラフィー表現を開発した。
アルツハイマー病患者からの拡散MRIデータを用いて,本モデルからトラクトグラフィーの特徴を抽出し,アルツハイマー病患者と健常者との鑑別を行った。
論文 参考訳(メタデータ) (2021-08-02T21:16:29Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
fMRIデータセットは複雑でヘテロジニアスな時系列で構成されていることを示す。
深層学習と幾何学的深層学習の様々なモデリング手法を比較し,今後の研究の道を開く。
私たちは、私たちの方法論の進歩が最終的に、健康と病気の脳のダイナミクスをより微妙に理解することで、臨床的および計算学的に関連があることを期待しています。
論文 参考訳(メタデータ) (2020-02-29T18:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。