論文の概要: Learning the Dynamics of Physical Systems from Sparse Observations with
Finite Element Networks
- arxiv url: http://arxiv.org/abs/2203.08852v1
- Date: Wed, 16 Mar 2022 18:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-18 15:50:56.242682
- Title: Learning the Dynamics of Physical Systems from Sparse Observations with
Finite Element Networks
- Title(参考訳): 有限要素ネットワークを用いたスパース観測から物理系のダイナミクスを学ぶ
- Authors: Marten Lienen, Stephan G\"unnemann
- Abstract要約: 有限要素法によるデータ力学の連続時間モデルを導出する。
得られたグラフニューラルネットワークは、空間領域のメッシュ化において、未知のダイナミクスが各セルに与える影響を推定する。
定性的な分析により、我々のモデルはデータを構成部品に切り離し、一意に解釈可能であることを示す。
- 参考スコア(独自算出の注目度): 2.538209532048867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new method for spatio-temporal forecasting on arbitrarily
distributed points. Assuming that the observed system follows an unknown
partial differential equation, we derive a continuous-time model for the
dynamics of the data via the finite element method. The resulting graph neural
network estimates the instantaneous effects of the unknown dynamics on each
cell in a meshing of the spatial domain. Our model can incorporate prior
knowledge via assumptions on the form of the unknown PDE, which induce a
structural bias towards learning specific processes. Through this mechanism, we
derive a transport variant of our model from the convection equation and show
that it improves the transfer performance to higher-resolution meshes on sea
surface temperature and gas flow forecasting against baseline models
representing a selection of spatio-temporal forecasting methods. A qualitative
analysis shows that our model disentangles the data dynamics into their
constituent parts, which makes it uniquely interpretable.
- Abstract(参考訳): 任意分布点における時空間予測の新しい手法を提案する。
観測された系が未知の偏微分方程式に従うと仮定すると、有限要素法によるデータのダイナミクスの連続時間モデルを得る。
得られたグラフニューラルネットワークは、空間領域のメッシュ化において、未知のダイナミクスが各セルに与える影響を推定する。
我々のモデルは、未知のPDEの形で仮定して事前知識を組み込むことができ、特定のプロセスを学ぶための構造的バイアスを引き起こす。
この機構により, 対流方程式からモデル輸送の変種を導出し, 海面温度およびガス流量予測における高分解能メッシュへの伝達性能の向上を, 時空間予測法の選択を表すベースラインモデルに対して示した。
定性的分析により、我々のモデルはデータダイナミクスを構成部品に切り離し、一意に解釈可能であることを示す。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
現在利用可能なニューラルネットワークベースのモデリングアプローチは、時間と空間でランダムに収集されたデータに直面したときに不足する。
そこで我々は,このようなランダムなサンプルデータを効果的に処理する新しい手法を開発した。
我々のモデルは、システムの力学と将来の観測のタイミングと位置の両方を予測するために、償却変分推論、ニューラルディファレンシャル方程式、ニューラルポイントプロセス、暗黙のニューラル表現といった技術を統合する。
論文 参考訳(メタデータ) (2024-06-01T09:03:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
本稿では,長期記憶を強制し,基礎となる力学系の大域的表現を保存する定式化であるPolyODEを提案する。
提案手法は理論的保証に支えられ,過去と将来のデータの再構築において,過去の成果よりも優れていたことを実証する。
論文 参考訳(メタデータ) (2023-03-03T10:49:09Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
我々は,時間変化パラメータと時間不変パラメータの両方を復元できるベイズ推論のシミュレーションに基づくディープラーニング手法を開発した。
この結果から,ディープラーニングアプローチは時間的ダイナミクスを捉える上で極めて効率的であることが示唆された。
論文 参考訳(メタデータ) (2022-11-23T17:42:53Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - A Deep Learning Approach for Predicting Spatiotemporal Dynamics From
Sparsely Observed Data [10.217447098102165]
未知偏微分方程式(PDE)によって駆動される物理過程の学習予測モデルの問題を考える。
本稿では,基礎となるダイナミクスを学習し,分散データサイトを用いてその進化を予測するディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-30T16:38:00Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - PDE-Driven Spatiotemporal Disentanglement [0.0]
機械学習コミュニティにおける最近の研究は、微分方程式理論から特定のツールを活用することで、高次元現象を予測する問題に対処している。
本稿では, 偏微分方程式の解法, 変数の分離に基づく, このタスクのための新しい, 一般的なパラダイムを提案する。
物理および合成ビデオデータセット上での先行技術モデルに対する提案手法の性能と適用性について実験的に検証した。
論文 参考訳(メタデータ) (2020-08-04T06:10:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。