Zero-range potentials for Dirac particles: Bound-state problems
- URL: http://arxiv.org/abs/2203.09891v1
- Date: Fri, 18 Mar 2022 11:59:56 GMT
- Title: Zero-range potentials for Dirac particles: Bound-state problems
- Authors: Rados{\l}aw Szmytkowski
- Abstract summary: A Dirac particle in $mathbbR3$ is bound by $Ngeqslant1$ spatially distributed zero-range potentials.
Wave functions may be normalized so that their self-pseudo-products are plus one, minus one or zero.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A model in which a Dirac particle in $\mathbb{R}^{3}$ is bound by
$N\geqslant1$ spatially distributed zero-range potentials is presented.
Interactions between the particle and the potentials are modeled by subjecting
a particle's bispinor wave function to certain limiting conditions at the
potential centers. Each of these conditions is parametrized by a $2\times2$
Hermitian matrix (or, equivalently, a real scalar and a real vector) and mixes
the upper and the lower components of the wave function. The problem of
determining particle's bound-state eigenenergies is reduced to the problem of
finding real zeroes of a determinant of a certain $2N\times2N$ matrix. As the
lower component of the particle's wave function is inverse-square singular at
each of the potential centers, the wave function itself is not
square-integrable. Nevertheless, one can define a scalar pseudo-product with
the property that wave functions belonging to different eigenenergies are
orthogonal with respect to it. The wave functions may then be normalized so
that their self-pseudo-products are plus one, minus one or zero. An auxiliary
set of Sturmian functions is constructed and used to derive an explicit
representation of particle's matrix Green's function. For illustration
purposes, two particular systems are studied in detail: 1) a particle bound in
a field of a single zero-range potential, 2) a particle bound in a field of two
identical zero-range potentials.
Related papers
- The $2$ -- D free particle in the phase space quantum mechanics [0.0]
The Wigner function of a free quantum particle propagating on a plane is derived.
The eigenvalue equations for the Wigner eigenfunction are solved.
arXiv Detail & Related papers (2025-04-28T19:21:27Z) - Analogue black string in a quantum harmonic oscillator [49.1574468325115]
We write the exact solution of the Klein-Gordon equation in the background of a chargeless, static black string.
The eigenvalue problem provides complex energy values for the particle, which may indicate the presence of quasinormal modes.
We show a simple quantum system that can imitate the particle in the black string background, whose solutions are also applications of the biconfluent Heun function.
arXiv Detail & Related papers (2024-12-31T15:03:57Z) - Supersymmetric Klein-Gordon and Dirac oscillators [55.2480439325792]
We show that the covariant phase space of the supersymmetric version of the relativistic oscillator is the odd tangent bundle of the space $Z_6$.
We obtain components of the spinor field that are holomorphic and antiholomorphic functions from Bergman spaces on $Z_6$ with different weight functions.
arXiv Detail & Related papers (2024-11-29T09:50:24Z) - Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field [0.0]
We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.
We analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.
Finally, the energy bands are plotted in terms of the wave vectors $K_x$ and $K_y$ with and without the magnetic term.
arXiv Detail & Related papers (2024-08-30T19:52:19Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Spatial Wavefunctions of Spin [0.0]
We present an alternative formulation of quantum mechanical angular momentum.
The wavefunctions are Wigner D-functions, $D_n ms (phi, theta, chi)$.
Some implications of the quantum number $n$ for fundamental particles are discussed.
arXiv Detail & Related papers (2023-07-25T15:48:56Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - Something new about radial wave functions of fermions in the repulsive
Coulomb field [0.0]
An impermeable barrier at r=r_cl in the effective potential of the relativistic Schr"odinger-type equation leads to exclusion of the range 0 leq r r_cl from the wave function domain.
We obtain new solutions to the Dirac equation in the Coulomb repulsive field.
arXiv Detail & Related papers (2023-01-13T05:52:33Z) - Fractional Statistics [0.0]
We study the quantum-mechanical description of particles whose motion is confined to two (or one) spatial dimensions.
The crossings of one-dimensional anyons on a ring are uni-directional, such that a fractional phase $theta$ acquired upon interchange gives rise to fractional shifts in the relative momenta between the anyons.
Excitations within designed systems, notably including superconducting circuits, can exhibit anyon behavior.
arXiv Detail & Related papers (2022-10-05T20:03:28Z) - Wave functions for high-symmetry, thin microstrip antennas and
two-dimensional quantum boxes [48.7576911714538]
For a spinless quantum particle in a one-dimensional box or an electromagnetic wave in a one-dimensional cavity, the respective Dirichlet and Neumann boundary conditions both lead to non-degenerate wave functions.
In two spatial dimensions, the symmetry of the box or microstrip antenna is an important feature that has often been overlooked in the literature.
arXiv Detail & Related papers (2021-08-18T00:57:42Z) - Morphology of three-body quantum states from machine learning [18.56475227525833]
We show that a triangular quantum billiard can be integrable or non-integrable.
We use machine learning tools to analyze properties of probability distributions of individual quantum states.
We find that convolutional neural networks can correctly classify integrable and non-integrable states.
arXiv Detail & Related papers (2021-02-09T17:23:08Z) - Zitterbewegung of massless particles [91.3755431537592]
Zitterbewegung of massless particles with an arbitrary spin is analyzed in various representations.
Zitterbewegung takes place in any representation except for the Foldy-Wouthuysen one.
arXiv Detail & Related papers (2020-08-12T14:16:44Z) - Approximate Solutions to the Klein-Fock-Gordon Equation for the sum of
Coulomb and Ring-Shaped like potentials [0.0]
We consider the quantum mechanical problem of the motion of a spinless charged relativistic particle with mass$M$.
It is shown that the system under consideration has both a discrete at $left|Eright|Mc2 $ and a continuous at $left|Eright|>Mc2 $ energy spectra.
It is also shown that relativistic expressions for wave functions, energy spectra and group generators in the limit $ctoinfty $ go over into the corresponding expressions for the nonrelativistic problem.
arXiv Detail & Related papers (2020-04-27T08:49:10Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.