論文の概要: Hierarchical Path-planning from Speech Instructions with Spatial Concept-based Topometric Semantic Mapping
- arxiv url: http://arxiv.org/abs/2203.10820v3
- Date: Fri, 21 Jun 2024 02:41:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 20:54:41.653772
- Title: Hierarchical Path-planning from Speech Instructions with Spatial Concept-based Topometric Semantic Mapping
- Title(参考訳): 空間概念に基づくトポロジカルセマンティックマッピングを用いた音声指示からの階層的経路計画
- Authors: Akira Taniguchi, Shuya Ito, Tadahiro Taniguchi,
- Abstract要約: 本研究の目的は,位相的意味マップと経路計画を用いた階層的空間表現の実現である。
本研究では,SIGVerseシミュレータ上でのToyota Human Support Robotを用いた家庭環境実験と,実ロボットAlbertを用いた実験室環境実験を行った。
経路距離を用いた音声指示を用いたナビゲーション実験は,経路コストを基準とした階層的経路計画法よりもSpCoTMHPの性能向上を実証した。
- 参考スコア(独自算出の注目度): 7.332652485849632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assisting individuals in their daily activities through autonomous mobile robots, especially for users without specialized knowledge, is crucial. Specifically, the capability of robots to navigate to destinations based on human speech instructions is essential. While robots can take different paths to the same goal, the shortest path is not always the best. A preferred approach is to accommodate waypoint specifications flexibly, planning an improved alternative path, even with detours. Additionally, robots require real-time inference capabilities. This study aimed to realize a hierarchical spatial representation using a topometric semantic map and path planning with speech instructions, including waypoints. This paper presents Spatial Concept-based Topometric Semantic Mapping for Hierarchical Path Planning (SpCoTMHP), integrating place connectivity. This approach offers a novel integrated probabilistic generative model and fast approximate inference across hierarchy levels. A formulation based on control as probabilistic inference theoretically supports the proposed path planning algorithm. We conducted experiments in home environments using the Toyota Human Support Robot on the SIGVerse simulator and in a lab-office environment with the real robot, Albert. Users issued speech commands specifying the waypoint and goal, such as "Go to the bedroom via the corridor." Navigation experiments using speech instructions with a waypoint demonstrated a performance improvement of SpCoTMHP over the baseline hierarchical path planning method with heuristic path costs (HPP-I), in terms of the weighted success rate at which the robot reaches the closest target and passes the correct waypoints, by 0.590. The computation time was significantly accelerated by 7.14 seconds with SpCoTMHP compared to baseline HPP-I in advanced tasks.
- Abstract(参考訳): 自律的な移動ロボット、特に専門知識のないユーザーによる日常的な活動を支援することは重要である。
具体的には、人間の発話指示に基づいて目的地に向かうロボットの能力が不可欠である。
ロボットは同じ目標に向かって異なる経路を取ることができるが、最短経路は必ずしもベストではない。
望ましいアプローチは、ウェイポイント仕様を柔軟に適合させ、デトゥールであっても改善された代替パスを計画することである。
さらに、ロボットはリアルタイムの推論機能を必要とする。
本研究では,幾何学的意味マップと経路計画を用いた階層的空間表現の実現を目的とした。
本稿では,空間概念に基づく階層的経路計画のためのトポロジカルセマンティックマッピング(SpCoTMHP)について述べる。
このアプローチは、新しい統合確率生成モデルと階層レベルの高速近似推論を提供する。
確率的推論による制御に基づく定式化は,提案した経路計画アルゴリズムを理論的に支持する。
本研究では,SIGVerseシミュレータ上でのToyota Human Support Robotを用いた家庭環境実験と,実ロボットAlbertを用いた実験室環境実験を行った。
ユーザーは「廊下を経由して寝室に行く」など、目的地と目標を指定する音声コマンドを発行した。
音声指示を用いたナビゲーション実験では,ロボットが最寄りの目標に到達し,正しい経路点を通過する重み付け成功率を0.590倍にすることで,ヒューリスティックパスコスト(HPP-I)を用いたベースライン階層パス計画法(HPP-I)よりもSpCoTMHPの性能改善が示された。
計算時間は、先進的なタスクではベースラインのHPP-Iと比較して、SpCoTMHPで7.14秒短縮された。
関連論文リスト
- IPPON: Common Sense Guided Informative Path Planning for Object Goal Navigation [33.979481250363584]
本稿では,新しい情報経路計画法と3次元オブジェクト確率マッピング手法を提案する。
マッピングモジュールはセマンティックセグメンテーションとベイズフィルタによって関心対象の確率を計算する。
我々のプランナーはゼロショットアプローチに従っているが、2023年のHabitat ObjectNav Challengeにおいて、Path Length(SPL)とSoft SPLが重み付けしたSuccessによって測定された最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-25T17:11:33Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
本稿では,目標指向ナビゲーションと目標非依存探索の両方を扱うために,単一の統合拡散政策をトレーニングする方法について述べる。
この統一された政策は、新しい環境における目標を視覚的に示す際に、全体的な性能が向上することを示す。
実世界の移動ロボットプラットフォーム上で実施した実験は,5つの代替手法と比較して,見えない環境における効果的なナビゲーションを示す。
論文 参考訳(メタデータ) (2023-10-11T21:07:14Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
パッシブル障害物認識(Passable Obstacles Aware, POA)プランナーは, 乱雑な環境下での二輪ロボットのナビゲーション手法である。
我々のアルゴリズムは、二輪ロボットが通過可能な障害物を通り抜ける道を見つけることを可能にする。
論文 参考訳(メタデータ) (2023-07-16T19:44:27Z) - Predicting Dense and Context-aware Cost Maps for Semantic Robot
Navigation [35.45993685414002]
本研究では,対象がセマンティックラベルで指定された未知環境における目標ナビゲーションの課題について検討する。
本稿では,意味的コンテキストを暗黙的に含む高コストマップを予測するために,ディープニューラルネットワークアーキテクチャとロス関数を提案する。
また、コストマップ予測のためのセマンティックなヒントを提供するために、アーキテクチャに中間レベルの視覚表現を融合する新しい方法を提案する。
論文 参考訳(メタデータ) (2022-10-17T11:43:19Z) - Risk-Aware Off-Road Navigation via a Learned Speed Distribution Map [39.54575497596679]
本研究は,データから学習可能なロボットの速度のみに基づく,トラバーサビリティの新たな表現を提案する。
提案アルゴリズムは,ロボットが達成できる速度の分布を,環境セマンティクスと命令された速度に基づいて予測する。
数値シミュレーションにより,提案したリスク認識計画アルゴリズムが平均目標達成時間を短縮することを示した。
論文 参考訳(メタデータ) (2022-03-25T03:08:02Z) - Systematic Comparison of Path Planning Algorithms using PathBench [55.335463666037086]
パスプランニングはモバイルロボティクスの重要な構成要素である。
学習に基づく経路計画アルゴリズムの開発は、急速な成長を遂げている。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2022-03-07T01:52:57Z) - Learning Time-optimized Path Tracking with or without Sensory Feedback [5.254093731341154]
本稿では,ロボットが関節空間で定義された基準経路を素早く追従できる学習型アプローチを提案する。
ロボットは、物理シミュレータで生成されたデータを用いて強化学習によって訓練されたニューラルネットワークによって制御される。
論文 参考訳(メタデータ) (2022-03-03T19:13:31Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - PathBench: A Benchmarking Platform for Classical and Learned Path
Planning Algorithms [59.3879573040863]
パスプランニングは、モバイルロボティクスの重要なコンポーネントです。
アルゴリズムを全体的あるいは統一的にベンチマークする試みはほとんど行われていない。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2021-05-04T21:48:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。