Are Quantum-Classical Hybrids compatible with Ontological Cellular
Automata?
- URL: http://arxiv.org/abs/2203.13703v1
- Date: Fri, 25 Mar 2022 15:18:04 GMT
- Title: Are Quantum-Classical Hybrids compatible with Ontological Cellular
Automata?
- Authors: Hans-Thomas Elze
- Abstract summary: We consider chains of 'classical' two-state Ising spins and their discrete deterministic dynamics as an ontological model.
A simple error mechanism is identified, which turns them into quantum mechanical objects.
We find that such hybrid character of composites, generally, does not persist under interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the concept of ontological states and their dynamical evolution by
permutations, as assumed in the Cellular Automaton Interpretation (CAI) of
quantum mechanics, we address the issue whether quantum-classical hybrids can
be described consistently in this framework. We consider chains of 'classical'
two-state Ising spins and their discrete deterministic dynamics as an
ontological model with an unitary evolution operator generated by pair exchange
interactions. A simple error mechanism is identified, which turns them into
quantum mechanical objects, chains of qubits. Consequently, an interaction
between a quantum mechanical and a 'classical' chain can be introduced and its
consequences for this quantum-classical hybrid be studied. We find that such
hybrid character of composites, generally, does not persist under interactions
and, therefore, cannot be upheld consistently, or even as a fundamental notion
as in Kopenhagen interpretation, within CAI.
Related papers
- Chiral quantum heating and cooling with an optically controlled ion [15.029218109713296]
Quantum heat engines and refrigerators are open quantum systems, whose dynamics can be well understood using a non-Hermitian formalism.
We demonstrate, using a Paul-trapped ultracold ion, the first chiral quantum heating and refrigeration by dynamically encircling a closed loop.
Our experiments have revealed that not only the adiabaticity-breakdown but also the Landau-Zener-St"uckelberg process play an essential role during dynamic encircling.
arXiv Detail & Related papers (2024-05-29T09:31:55Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Hybrid quantum-classical dynamics of pure-dephasing systems [0.0]
We consider the interaction dynamics of a classical oscillator and a quantum two-level system for different pure-dephasing Hamiltonians of the type $widehatH(q,p)=H_C(q,p)boldsymbol1+H_I(q,p)widehatsigma_z$.
arXiv Detail & Related papers (2023-03-08T12:22:00Z) - Entanglement and thermokinetic uncertainty relations in coherent
mesoscopic transport [0.0]
Coherence leads to entanglement and even nonlocality in quantum systems.
Coherence may lead to a suppression of fluctuations, causing violations of thermo-kinetic uncertainty relations.
Our results provide guiding principles for the design of out-of-equilibrium devices that exhibit nonclassical behavior.
arXiv Detail & Related papers (2022-12-07T18:26:00Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Koopman wavefunctions and classical states in hybrid quantum-classical
dynamics [0.0]
We deal with the reversible dynamics of coupled quantum and classical systems.
We exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics.
arXiv Detail & Related papers (2021-08-03T13:19:38Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Nonergodic Quantum Dynamics from Deformations of Classical Cellular
Automata [0.0]
We show that every classical CA defines a family of generically non-integrable, periodically-driven (Floquet) quantum dynamics with exact, nonthermal eigenstates.
Results establish classical CAs as parent models for a class of quantum chaotic systems with rare nonthermal eigenstates.
arXiv Detail & Related papers (2020-06-03T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.