Multiqubit Toffoli gates and optimal geometry with Rydberg atoms
- URL: http://arxiv.org/abs/2203.14302v2
- Date: Thu, 25 Aug 2022 07:39:59 GMT
- Title: Multiqubit Toffoli gates and optimal geometry with Rydberg atoms
- Authors: Dongmin Yu, Han Wang, Jin-ming Liu, Shi-Lei Su, Jing Qian and Weiping
Zhang
- Abstract summary: We demonstrate a multiqubit blockade gate with atoms arranged in a three-dimensional spheroidal array.
The gate performance is greatly improved by the method of optimizing control-qubit distributions on the spherical surface.
We numerically show that a C$_6$NOT Rydberg gate can be created with a fidelity of 0.992.
- Score: 8.593850607345678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to its potential for implementing a scalable quantum computer, multiqubit
Toffoli gate lies in the heart of quantum information processing. In this
article, we demonstrate a multiqubit blockade gate with atoms arranged in a
three-dimension spheroidal array. The gate performance is greatly improved by
the method of optimizing control-qubit distributions on the spherical surface
via evolutionary algorithm, which leads to an enhanced asymmetric Rydberg
blockade. This spheroidal configuration, not only arises a well preservation
for the dipole blockade energy between arbitrary control-target pairs, which
keeps the asymmetric blockade error at a very low level; but also manifests an
unprecedented robustness to the spatial position variations, leading to a
negligible position error. Taking account of intrinsic errors and with typical
experimental parameters, we numerically show that a C$_6$NOT Rydberg gate can
be created with a fidelity of 0.992 which is only limited by the Rydberg state
decays.Our protocol opens up a new platform of higher-dimensional atomic arrays
for achieving multiqubit neutral-atom quantum computation.
Related papers
- Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Systematic error tolerant multiqubit holonomic entangling gates [11.21912040660678]
We propose to realize high-fidelity holonomic $(N+1)$-qubit controlled gates using Rydberg atoms confined in optical arrays or superconducting circuits.
Our study paves a new route to build robust multiqubit gates with Rydberg atoms trapped in optical arrays or with superconducting circuits.
arXiv Detail & Related papers (2020-12-05T03:00:47Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z) - Spheroidal-structure-based multi-qubit Toffoli gate via asymmetric
Rydberg interaction [6.151090395769923]
We propose an exotic multi-qubit Toffoli gate protocol via asymmetric Rydberg blockade.
The merit of a spheroidal structure lies in a well preservation of strong blocked energies between all control-target atom pairs.
Our findings may shed light on scalable neutral-atom quantum computation in special high-dimensional arrays.
arXiv Detail & Related papers (2020-07-23T11:30:26Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Scalability and high-efficiency of an $(n+1)$-qubit Toffoli gate sphere
via blockaded Rydberg atoms [6.151090395769923]
Current route to the creation of Toffoli gate requires implementing sequential single- and two-qubit gates.
We develop a new theoretical protocol to construct a universal $(n+1)$-qubit Toffoli gate sphere based on the Rydberg blockade mechanism.
We show that the gate errors mainly attribute to the imperfect blockade strength, the spontaneous atomic loss and the imperfect ground-state preparation.
arXiv Detail & Related papers (2020-01-14T03:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.