論文の概要: Infinite-Dimensional Sparse Learning in Linear System Identification
- arxiv url: http://arxiv.org/abs/2203.14731v1
- Date: Mon, 28 Mar 2022 13:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-29 17:26:26.653574
- Title: Infinite-Dimensional Sparse Learning in Linear System Identification
- Title(参考訳): 線形システム同定における無限次元スパース学習
- Authors: Mingzhou Yin, Mehmet Tolga Akan, Andrea Iannelli, Roy S. Smith
- Abstract要約: 本稿では,原子ノルム正規化に基づく無限次元スパース学習アルゴリズムを提案する。
この問題の解決の難しさは、無限の原子モデルが存在するという事実にある。
- 参考スコア(独自算出の注目度): 0.2867517731896504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regularized methods have been widely applied to system identification
problems without known model structures. This paper proposes an
infinite-dimensional sparse learning algorithm based on atomic norm
regularization. Atomic norm regularization decomposes the transfer function
into first-order atomic models and solves a group lasso problem that selects a
sparse set of poles and identifies the corresponding coefficients. The
difficulty in solving the problem lies in the fact that there are an infinite
number of possible atomic models. This work proposes a greedy algorithm that
generates new candidate atomic models maximizing the violation of the
optimality condition of the existing problem. This algorithm is able to solve
the infinite-dimensional group lasso problem with high precision. The algorithm
is further extended to reduce the bias and reject false positives in pole
location estimation by iteratively reweighted adaptive group lasso and
complementary pairs stability selection respectively. Numerical results
demonstrate that the proposed algorithm performs better than benchmark
parameterized and regularized methods in terms of both impulse response fitting
and pole location estimation.
- Abstract(参考訳): 正規化法は既知のモデル構造を持たないシステム同定問題に広く適用されている。
本稿では,原子ノルム正規化に基づく無限次元スパース学習アルゴリズムを提案する。
原子ノルム正規化は、伝達関数を一階原子モデルに分解し、粗い極の集合を選択し、対応する係数を識別する群ラスソ問題を解く。
この問題を解決することの難しさは、可能な原子モデルが無限に存在するという事実にある。
本研究は,既存の問題の最適条件の破れを最大化する新しい候補原子モデルを生成する欲望アルゴリズムを提案する。
このアルゴリズムは、無限次元群ラッソ問題を高精度に解くことができる。
このアルゴリズムはさらに、反復的に重み付けされた適応群ラスソと相補的なペア安定性の選択により、極位置推定におけるバイアスの低減と偽陽性の否定のために拡張される。
数値計算により,提案アルゴリズムは,インパルス応答フィッティングと極位置推定の両方の観点から,ベンチマークパラメータ化および正規化手法よりも優れた性能を示した。
関連論文リスト
- A Novel Normalized-Cut Solver with Nearest Neighbor Hierarchical
Initialization [107.07093621337084]
正規化カット(N-Cut)は、スペクトルクラスタリングの有名なモデルである。
1)正規化ラプラシア行列の連続スペクトル埋め込みを計算する; 2)$K$-meansまたはスペクトル回転による離散化。
有名な座標降下法に基づく新しいN-Cut解法を提案する。
論文 参考訳(メタデータ) (2023-11-26T07:11:58Z) - Complexity of Block Coordinate Descent with Proximal Regularization and
Applications to Wasserstein CP-dictionary Learning [1.4010916616909743]
正規化(BCD-PR)によるGauss-Sdel型ブロック座標の導出について検討する。
W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W(W) W) W(W) W(W) W) W(W) W(W) W) W(W) W(W) W(W)
論文 参考訳(メタデータ) (2023-06-04T17:52:49Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
一般化された複合ミラー降下アルゴリズムの一群を提案し,解析する。
適応的なステップサイズでは、提案アルゴリズムは問題の事前知識を必要とせずに収束する。
決定集合の低次元構造を高次元問題に活用する。
論文 参考訳(メタデータ) (2022-11-21T18:31:43Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
非線形一般化ナッシュ均衡問題(NGNEP)における平衡計算の問題を考える。
我々の貢献は、2次ペナルティ法と拡張ラグランジアン法に基づく2つの単純な一階アルゴリズムフレームワークを提供することである。
これらのアルゴリズムに対する漸近的理論的保証を提供する。
論文 参考訳(メタデータ) (2022-04-07T00:11:05Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
現在のアルゴリズムはブロック座標降下法や近点アルゴリズムを用いて設計されている。
本稿では,2次元投影法に基づく新しいアルゴリズムを提案し,慎重に設計された探索方向と変数分割方式を取り入れた。
合成および実世界のデータセットに対する実験結果から,提案アルゴリズムは最先端の手法と比較して計算効率を著しく向上させることを示した。
論文 参考訳(メタデータ) (2021-12-03T14:39:10Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Sharp global convergence guarantees for iterative nonconvex
optimization: A Gaussian process perspective [30.524043513721168]
回帰モデルのクラスに対する反復アルゴリズムの収束を解析するための一般的なレシピを開発する。
決定論的には、有限サンプル状態におけるアルゴリズムの収束率と最終的なエラーフロアの両方を正確にキャプチャする。
我々は、更新の交互化に基づく高次アルゴリズムと、下位次数に基づく一次アルゴリズムの両方に対して、鋭い収束率を示す。
論文 参考訳(メタデータ) (2021-09-20T21:48:19Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
2組の制約を持つ凸最適化の問題は、半定値プログラミングの文脈で頻繁に発生する。
最初の制約セットへのプロジェクションは困難であるため、プロジェクションフリーなアルゴリズムを探索する必要がある。
提案アルゴリズムの有効性は, スパース行列推定, 半定緩和によるクラスタリング, および一様スペースカット問題の適用性について検証した。
論文 参考訳(メタデータ) (2021-07-14T08:01:30Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。