Wildfire risk forecast: An optimizable fire danger index
- URL: http://arxiv.org/abs/2203.15558v1
- Date: Mon, 28 Mar 2022 14:08:49 GMT
- Title: Wildfire risk forecast: An optimizable fire danger index
- Authors: Eduardo Rodrigues, Bianca Zadrozny, Campbell Watson
- Abstract summary: Wildfire events have caused severe losses in many places around the world and are expected to increase with climate change.
Fire risk indices use weather forcing to make advanced predictions of the risk of fire.
Predictions of fire risk indices can be used to allocate resources in places with high risk.
We propose a novel implementation of one index (NFDRS IC) as a differentiable function in which one can optimize its internal parameters via gradient descent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wildfire events have caused severe losses in many places around the world and
are expected to increase with climate change. Throughout the years many
technologies have been developed to identify fire events early on and to
simulate fire behavior once they have started. Another particularly helpful
technology is fire risk indices, which use weather forcing to make advanced
predictions of the risk of fire. Predictions of fire risk indices can be used,
for instance, to allocate resources in places with high risk. These indices
have been developed over the years as empirical models with parameters that
were estimated in lab experiments and field tests. These parameters, however,
may not fit well all places where these models are used. In this paper we
propose a novel implementation of one index (NFDRS IC) as a differentiable
function in which one can optimize its internal parameters via gradient
descent. We leverage existing machine learning frameworks (PyTorch) to
construct our model. This approach has two benefits: (1) the NFDRS IC
parameters can be improved for each region using actual observed fire events,
and (2) the internal variables remain intact for interpretations by specialists
instead of meaningless hidden layers as in traditional neural networks. In this
paper we evaluate our strategy with actual fire events for locations in the USA
and Europe.
Related papers
- Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years.
By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model.
The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems.
arXiv Detail & Related papers (2024-09-18T04:57:48Z) - Comparison of metaheuristics for the firebreak placement problem: a
simulation-based optimization approach [0.0]
The problem of firebreak placement is crucial for fire prevention.
It is therefore necessary to consider the nature of fires, which are highly unpredictable from ignition to extinction.
We propose a solution approach for the problem from the perspective of simulation-based optimization.
arXiv Detail & Related papers (2023-11-29T06:45:07Z) - Modelling wildland fire burn severity in California using a spatial
Super Learner approach [0.04188114563181614]
Given the increasing prevalence of wildland fires in the Western US, there is a critical need to develop tools to understand and accurately predict burn severity.
We develop a machine learning model to predict post-fire burn severity using pre-fire remotely sensed data.
When implemented, this model has the potential to the loss of human life, property, resources, and ecosystems in California.
arXiv Detail & Related papers (2023-11-25T22:09:14Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
arXiv Detail & Related papers (2023-11-18T08:48:58Z) - Prescribed Fire Modeling using Knowledge-Guided Machine Learning for
Land Management [2.158876211806538]
This paper introduces a novel machine learning (ML) framework that enables rapid emulation of prescribed fires.
By incorporating domain knowledge, the proposed method helps reduce physical inconsistencies in fuel density estimates in data-scarce scenarios.
We also overcome the problem of biased estimation of fire spread metrics by incorporating a hierarchical modeling structure.
arXiv Detail & Related papers (2023-10-02T19:38:04Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
Recent progress in using satellites to detect fire locations provides the opportunity to use measurements to improve fire spread forecasts.
This work develops a method for inferring the history of a wildfire from satellite measurements.
arXiv Detail & Related papers (2023-09-05T23:24:34Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.