Recovering models of open quantum systems from data via polynomial
optimization: Towards globally convergent quantum system identification
- URL: http://arxiv.org/abs/2203.17164v1
- Date: Thu, 31 Mar 2022 16:38:08 GMT
- Title: Recovering models of open quantum systems from data via polynomial
optimization: Towards globally convergent quantum system identification
- Authors: Denys I. Bondar and Zakhar Popovych and Kurt Jacobs and Georgios
Korpas and Jakub Marecek
- Abstract summary: Current quantum devices suffer imperfections as a result of fabrication, as well as noise and dissipation as a result of coupling to their immediate environments.
An alternative is to extract such models from time-series measurements of their behavior.
Recent advances in optimization have provided globally convergent solvers for this class of problems.
We include an overview of the state-of-the-art algorithms, bounds, and convergence rates, and illustrate the use of this approach to modeling open quantum systems.
- Score: 4.25234252803357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current quantum devices suffer imperfections as a result of fabrication, as
well as noise and dissipation as a result of coupling to their immediate
environments. Because of this, it is often difficult to obtain accurate models
of their dynamics from first principles. An alternative is to extract such
models from time-series measurements of their behavior. Here, we formulate this
system-identification problem as a polynomial optimization problem. Recent
advances in optimization have provided globally convergent solvers for this
class of problems, which using our formulation prove estimates of the Kraus map
or the Lindblad equation. We include an overview of the state-of-the-art
algorithms, bounds, and convergence rates, and illustrate the use of this
approach to modeling open quantum systems.
Related papers
- Large-scale stochastic simulation of open quantum systems [2.2627671295262215]
We introduce the tensor jump method (TJM), a scalable, embarrassingly parallel algorithm for simulating large-scale open quantum systems.
This work represents a significant step forward in the simulation of large-scale open quantum systems.
arXiv Detail & Related papers (2025-01-29T19:00:00Z) - Entanglement-informed Construction of Variational Quantum Circuits [0.0]
Variational Quantum Eigensolver (VQE) is a promising tool for simulating ground states of quantum many-body systems on noisy quantum computers.
In this article, we explore entanglement-informed ansatz schemes that naturally emerge from specific models.
arXiv Detail & Related papers (2025-01-29T10:04:43Z) - Non-Markovian Quantum Control via Model Maximum Likelihood Estimation
and Reinforcement Learning [0.0]
We propose a novel approach that incorporates the non-Markovian nature of the environment into a low-dimensional effective reservoir.
We utilize machine learning techniques to learn the effective quantum dynamics more efficiently than traditional tomographic methods.
This approach may not only mitigates the issues of model bias but also provides a more accurate representation of quantum dynamics.
arXiv Detail & Related papers (2024-02-07T18:37:17Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Fast inversion, preconditioned quantum linear system solvers, and fast
evaluation of matrix functions [4.327821619134312]
We introduce a quantum primitive called fast inversion, which can be used as a preconditioner for solving quantum linear systems.
We demonstrate the application of preconditioned linear system solvers for computing single-particle Green's functions of quantum many-body systems.
arXiv Detail & Related papers (2020-08-30T23:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.