Recovering models of open quantum systems from data via polynomial
optimization: Towards globally convergent quantum system identification
- URL: http://arxiv.org/abs/2203.17164v1
- Date: Thu, 31 Mar 2022 16:38:08 GMT
- Title: Recovering models of open quantum systems from data via polynomial
optimization: Towards globally convergent quantum system identification
- Authors: Denys I. Bondar and Zakhar Popovych and Kurt Jacobs and Georgios
Korpas and Jakub Marecek
- Abstract summary: Current quantum devices suffer imperfections as a result of fabrication, as well as noise and dissipation as a result of coupling to their immediate environments.
An alternative is to extract such models from time-series measurements of their behavior.
Recent advances in optimization have provided globally convergent solvers for this class of problems.
We include an overview of the state-of-the-art algorithms, bounds, and convergence rates, and illustrate the use of this approach to modeling open quantum systems.
- Score: 4.25234252803357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current quantum devices suffer imperfections as a result of fabrication, as
well as noise and dissipation as a result of coupling to their immediate
environments. Because of this, it is often difficult to obtain accurate models
of their dynamics from first principles. An alternative is to extract such
models from time-series measurements of their behavior. Here, we formulate this
system-identification problem as a polynomial optimization problem. Recent
advances in optimization have provided globally convergent solvers for this
class of problems, which using our formulation prove estimates of the Kraus map
or the Lindblad equation. We include an overview of the state-of-the-art
algorithms, bounds, and convergence rates, and illustrate the use of this
approach to modeling open quantum systems.
Related papers
- An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Unbiasing time-dependent Variational Monte Carlo by projected quantum
evolution [44.99833362998488]
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate quantum systems classically.
We prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias.
We show that a different scheme based on the solution of an optimization problem at each time step is free from such problems.
arXiv Detail & Related papers (2023-05-23T17:38:10Z) - A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms [18.075115172621096]
We present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs via Ising solvers.
We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm.
arXiv Detail & Related papers (2022-07-27T16:47:32Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Low depth mechanisms for quantum optimization [0.25295633594332334]
We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement.
This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution.
arXiv Detail & Related papers (2020-08-19T18:16:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.