論文の概要: Deep transfer learning for system identification using long short-term
memory neural networks
- arxiv url: http://arxiv.org/abs/2204.03125v1
- Date: Wed, 6 Apr 2022 23:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-08 15:56:19.327501
- Title: Deep transfer learning for system identification using long short-term
memory neural networks
- Title(参考訳): 長期記憶ニューラルネットワークを用いたシステム同定のためのDeep Transfer Learning
- Authors: Kaicheng Niu, Mi Zhou, Chaouki T. Abdallah, Mohammad Hayajneh
- Abstract要約: 本稿では,パラメータの微調整と凍結という2種類のディープトランスファー学習を用いて,システム識別のためのデータと計算要件を削減することを提案する。
その結果,直接学習と比較して学習の10%から50%が高速化され,データや計算資源も節約されることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural networks (RNNs) have many advantages over more traditional
system identification techniques. They may be applied to linear and nonlinear
systems, and they require fewer modeling assumptions. However, these neural
network models may also need larger amounts of data to learn and generalize.
Furthermore, neural networks training is a time-consuming process. Hence,
building upon long-short term memory neural networks (LSTM), this paper
proposes using two types of deep transfer learning, namely parameter
fine-tuning and freezing, to reduce the data and computation requirements for
system identification. We apply these techniques to identify two dynamical
systems, namely a second-order linear system and a Wiener-Hammerstein nonlinear
system. Results show that compared with direct learning, our method accelerates
learning by 10% to 50%, which also saves data and computing resources.
- Abstract(参考訳): リカレントニューラルネットワーク(RNN)は、従来のシステム識別技術よりも多くの利点がある。
線形系や非線形系に適用でき、モデリングの仮定を少なくできる。
しかし、これらのニューラルネットワークモデルは、学習と一般化に大量のデータを必要とする可能性がある。
さらに、ニューラルネットワークトレーニングは時間を要するプロセスである。
そこで本研究では,長期記憶ニューラルネットワーク(LSTM)を用いて,パラメータの微調整と凍結という2種類のディープトランスファー学習を用いて,システム識別のためのデータと計算要件を削減することを提案する。
これらの手法を用いて、2階線形系とウィーナー・ハマースタイン非線形系という2つの力学系を同定する。
その結果,直接学習に比べて10%から50%の学習が促進され,データや計算資源も節約できることがわかった。
関連論文リスト
- Systematic construction of continuous-time neural networks for linear dynamical systems [0.0]
本稿では,動的システムのサブクラスをモデル化するためのニューラルネットワーク構築の体系的アプローチについて論じる。
我々は、各ニューロンの出力が1次または2次常微分方程式(ODE)の解として連続的に進化する連続時間ニューラルネットワークの変種を用いる。
データからネットワークアーキテクチャとパラメータを導出する代わりに、所定のLTIシステムから直接スパースアーキテクチャとネットワークパラメータを計算するための勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-24T16:16:41Z) - GreenLightningAI: An Efficient AI System with Decoupled Structural and
Quantitative Knowledge [0.0]
強力な、人気のあるディープニューラルネットワークのトレーニングには、非常に高い経済的および環境的コストが伴う。
この作業は、GreenLightningAIを提案することによって、根本的に異なるアプローチを取る。
新しいAIシステムは、所定のサンプルに対してシステムサブセットを選択するために必要な情報を格納する。
我々は,AIシステムを新しいサンプルで再学習する際に,構造情報を無修正で保持できることを実験的に示す。
論文 参考訳(メタデータ) (2023-12-15T17:34:11Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Learn Like The Pro: Norms from Theory to Size Neural Computation [3.848947060636351]
非線形性を持つ力学系が、それらをエミュレートしようとするニューラル系の設計にどのように影響するかを考察する。
本稿では,学習性尺度を提案し,その関連する特徴を学習力学の近平衡挙動に量子化する。
連続的あるいは離散的な時間ダイナミクスを模倣する乗法ノードを持つニューラルネットワークのクラスの正確なサイズを明らかにしている。
論文 参考訳(メタデータ) (2021-06-21T20:58:27Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
非線形システム識別のための新しいDeep Neural Network (DNN)アーキテクチャを提案する。
メモリシステムにインスパイアされたインダクティブバイアス(アーキテクチャ)と正規化(損失関数)を導入する。
このアーキテクチャは、利用可能なデータのみに基づいて、自動的な複雑性の選択を可能にする。
論文 参考訳(メタデータ) (2021-06-06T10:06:07Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Physical deep learning based on optimal control of dynamical systems [0.0]
本研究では,連続時間力学系の最適制御に基づくパターン認識を行う。
鍵となる例として、光電子遅延システムにダイナミックスに基づく認識アプローチを適用する。
これは、多くの重みパラメータをトレーニングする必要がある従来の多層ニューラルネットワークとは対照的である。
論文 参考訳(メタデータ) (2020-12-16T06:38:01Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
本研究では,高忠実度モデルと低忠実度モデルの両方から生成された学習データを用いた伝達学習手法の適用について検討する。
前者のアプローチでは、低忠実度データに基づいて、入力を関心の出力にマッピングするニューラルネットワークモデルを訓練する。
次に、高忠実度データを使用して、低忠実度ネットワークの上層(s)のパラメータを適応させたり、より単純なニューラルネットワークをトレーニングして、低忠実度ネットワークの出力を高忠実度モデルのパラメータにマッピングする。
論文 参考訳(メタデータ) (2020-02-11T15:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。