論文の概要: Utility Functions for Human/Robot Interaction
- arxiv url: http://arxiv.org/abs/2204.04071v1
- Date: Fri, 8 Apr 2022 13:41:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-11 13:13:20.427604
- Title: Utility Functions for Human/Robot Interaction
- Title(参考訳): 人間とロボットのインタラクションのためのユーティリティ機能
- Authors: Bruno Yun, Nir Oren, Madalina Croitoru
- Abstract要約: 本稿では,ロボットの動作を管理するユーティリティモデルの特性について検討する。
このアプローチの新規性は、ユーティリティアグリゲーション機能を通じて、ロボットの責務をユーティリティモデルに組み込むことにある。
- 参考スコア(独自算出の注目度): 10.055143995729415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we place ourselves in the context of human robot interaction
and address the problem of cognitive robot modelling. More precisely we are
investigating properties of a utility-based model that will govern a robot's
actions. The novelty of this approach lies in embedding the responsibility of
the robot over the state of affairs into the utility model via a utility
aggregation function. We describe desiderata for such a function and consider
related properties.
- Abstract(参考訳): 本稿では,人間とロボットの相互作用の文脈に自己を置き,認知的ロボットモデリングの問題に取り組む。
より正確には、ロボットの動作を管理するユーティリティベースのモデルの性質を調査している。
このアプローチの目新しさは、ロボットの責任を状況よりも、ユーティリティ集約機能を通じてユーティリティモデルに組み込むことにある。
そのような関数に対するdesiderataを記述し、関連する性質について考察する。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
機能モデリングは、異なるマシンが提供する機能を意味的にモデル化するための有望なアプローチと考えられている。
この貢献は、製造から自律ロボットの分野への能力モデルの適用と拡張の仕方について考察する。
論文 参考訳(メタデータ) (2022-09-22T10:13:55Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - A Neurorobotics Approach to Behaviour Selection based on Human Activity
Recognition [0.0]
行動選択はロボット工学、特に人間とロボットの相互作用の分野で活発に研究されている。
これまでのほとんどのアプローチは、認識された活動とロボットの行動の間の決定論的関連から成り立っている。
本稿では,生物の神経生理学的側面に類似した計算モデルに基づく神経ロボティクス的アプローチを提案する。
論文 参考訳(メタデータ) (2021-07-27T01:25:58Z) - Sensorimotor representation learning for an "active self" in robots: A
model survey [10.649413494649293]
人間では、これらの能力は宇宙で私たちの身体を知覚する能力と関連していると考えられている。
本稿では,これらの能力の発達過程について概説する。
人工エージェントにおける自己感覚の出現を可能にする理論計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-25T16:31:01Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。