論文の概要: From graphs to DAGs: a low-complexity model and a scalable algorithm
- arxiv url: http://arxiv.org/abs/2204.04644v1
- Date: Sun, 10 Apr 2022 10:22:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 18:09:58.205000
- Title: From graphs to DAGs: a low-complexity model and a scalable algorithm
- Title(参考訳): グラフからDAGへ:低複雑さモデルとスケーラブルアルゴリズム
- Authors: Shuyu Dong, Mich\`ele Sebag
- Abstract要約: 本稿では,低ランク行列因数分解とDAGの連続的な最適化のためのスペース化機構を組み合わせたLoRAM for Low-Rank Additive Modelを提案する。
提案手法は,NoTearsと同じDAG特性関数を扱いながら,立方的複雑性から二次的複雑性への還元を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning directed acyclic graphs (DAGs) is long known a critical challenge at
the core of probabilistic and causal modeling. The NoTears approach of (Zheng
et al., 2018), through a differentiable function involving the matrix
exponential trace $\mathrm{tr}(\exp(\cdot))$, opens up a way to learning DAGs
via continuous optimization, though with a $O(d^3)$ complexity in the number
$d$ of nodes. This paper presents a low-complexity model, called LoRAM for
Low-Rank Additive Model, which combines low-rank matrix factorization with a
sparsification mechanism for the continuous optimization of DAGs. The main
contribution of the approach lies in an efficient gradient approximation method
leveraging the low-rank property of the model, and its straightforward
application to the computation of projections from graph matrices onto the DAG
matrix space. The proposed method achieves a reduction from a cubic complexity
to quadratic complexity while handling the same DAG characteristic function as
NoTears, and scales easily up to thousands of nodes for the projection problem.
The experiments show that the LoRAM achieves efficiency gains of orders of
magnitude compared to the state-of-the-art at the expense of a very moderate
accuracy loss in the considered range of sparse matrices, and with a low
sensitivity to the rank choice of the model's low-rank component.
- Abstract(参考訳): 有向非巡回グラフ(DAG)の学習は、確率的および因果的モデリングのコアにおける重要な課題として知られている。
NoTears の (Zheng et al., 2018) アプローチは、行列指数的トレース $\mathrm{tr}(\exp(\cdot))$ を含む微分可能な関数を通じて、連続最適化により DAG を学ぶ方法を開くが、$O(d^3)$ はノード数$d$の複雑さを持つ。
本稿では,低ランク行列因数分解とDAGの連続的な最適化のためのスペース化機構を組み合わせたLoRAM for Low-Rank Additive Modelを提案する。
このアプローチの主な貢献は、モデルの低ランク性を利用した効率的な勾配近似法と、グラフ行列からDAG行列空間への射影の計算への直接的な応用である。
提案手法は,NoTearsと同じDAG特性関数を扱いながら,立方体複雑性から二次複雑性への還元を実現し,投影問題に対して数千ノードまで容易にスケールアップできる。
実験により,LRAMは,スパース行列の精度が極めて低下し,低ランク成分のランク選択に対する感度が低かったため,最先端のモデルと比較して桁違いの効率向上が達成された。
関連論文リスト
- $ψ$DAG: Projected Stochastic Approximation Iteration for DAG Structure Learning [6.612096312467342]
Directed A Graphs (DAGs) の構造を学ぶことは、ノード数に応じてスケールする可能なグラフの巨大な検索空間のため、大きな課題となる。
近年の進歩は、微分可能指数関数性制約を取り入れた連続最適化タスクとしてこの問題を再定義している。
本稿では,SGD(Gradient Descent)に基づく最適化手法と統合した近似手法を用いて,DAGを学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T12:13:11Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary
Differential Equations for Compressible Navier--Stokes Equations [0.18648070031379424]
計算コストを削減するために、サブグリッドスケールモデルで低忠実度モデルを実行するのが一般的である。
ニューラル常微分演算子によって拡張された偏微分方程式をシミュレートする際のサブグリッドスケールモデル効果の学習法を提案する。
提案手法は,低次DGソルバの欠落スケールを連続的に学習し,低次DG近似の精度を向上させる。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
本研究では,高階グラフ畳み込みからの効率的な学習と,ノード分類のための隣接行列から直接学習する。
得られたモデルが新しいグラフと残留スケーリングパラメータをもたらすことを示す。
提案手法は,非親和性パラメータのノード分類における精度の向上を実証する。
論文 参考訳(メタデータ) (2022-09-12T04:46:55Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - uGLAD: Sparse graph recovery by optimizing deep unrolled networks [11.48281545083889]
深層ネットワークを最適化してスパースグラフ復元を行う新しい手法を提案する。
我々のモデルであるuGLADは、最先端モデルGLADを教師なし設定に構築し、拡張します。
我々は, 遺伝子調節ネットワークから生成した合成ガウスデータ, 非ガウスデータを用いて, モデル解析を行い, 嫌気性消化の事例研究を行った。
論文 参考訳(メタデータ) (2022-05-23T20:20:27Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Alternating minimization algorithms for graph regularized tensor
completion [8.26185178671935]
我々は、低ランクテンソル完備化(LRTC)に対するカノニカルポリアディック(CP)分解法を考える。
グラフ正規化の使用にはLRTCの学習精度のメリットが伴うが、同時に結合グラフラプラシア語を誘導する。
基礎となるCP分解モデルにおけるブロック構造を利用して, 効率の良い同期最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-28T23:20:49Z) - Estimation of sparse Gaussian graphical models with hidden clustering
structure [8.258451067861932]
隠れクラスタリング構造を持つスパースガウス図形モデルを推定するモデルを提案する。
対称なガウス・シーデルに基づく乗算器の交互方向法を開発した。
合成データと実データの両方に関する数値実験により,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2020-04-17T08:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。