論文の概要: Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary
Differential Equations for Compressible Navier--Stokes Equations
- arxiv url: http://arxiv.org/abs/2310.18897v2
- Date: Tue, 30 Jan 2024 18:35:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 18:41:24.332774
- Title: Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary
Differential Equations for Compressible Navier--Stokes Equations
- Title(参考訳): 圧縮性ナビエに対するニューラル正規微分方程式を用いた低次不連続ガレルキン法の拡張-ストークス方程式
- Authors: Shinhoo Kang, Emil M. Constantinescu
- Abstract要約: 計算コストを削減するために、サブグリッドスケールモデルで低忠実度モデルを実行するのが一般的である。
ニューラル常微分演算子によって拡張された偏微分方程式をシミュレートする際のサブグリッドスケールモデル効果の学習法を提案する。
提案手法は,低次DGソルバの欠落スケールを連続的に学習し,低次DG近似の精度を向上させる。
- 参考スコア(独自算出の注目度): 0.18648070031379424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing computing power over the years has enabled simulations to become
more complex and accurate. While immensely valuable for scientific discovery
and problem-solving, however, high-fidelity simulations come with significant
computational demands. As a result, it is common to run a low-fidelity model
with a subgrid-scale model to reduce the computational cost, but selecting the
appropriate subgrid-scale models and tuning them are challenging. We propose a
novel method for learning the subgrid-scale model effects when simulating
partial differential equations augmented by neural ordinary differential
operators in the context of discontinuous Galerkin (DG) spatial discretization.
Our approach learns the missing scales of the low-order DG solver at a
continuous level and hence improves the accuracy of the low-order DG
approximations as well as accelerates the filtered high-order DG simulations
with a certain degree of precision. We demonstrate the performance of our
approach through multidimensional Taylor-Green vortex examples at different
Reynolds numbers and times, which cover laminar, transitional, and turbulent
regimes. The proposed method not only reconstructs the subgrid-scale from the
low-order (1st-order) approximation but also speeds up the filtered high-order
DG (6th-order) simulation by two orders of magnitude.
- Abstract(参考訳): ここ数年でコンピューティングのパワーが高まり、シミュレーションはより複雑で正確になった。
しかし、科学的発見や問題解決には極めて価値があるが、高忠実度シミュレーションには重要な計算要求が伴う。
その結果、サブグリッドスケールモデルを用いて低忠実度モデルを実行して計算コストを削減することは一般的であるが、適切なサブグリッドスケールモデルを選択して調整することは困難である。
本稿では, ニューラル常微分演算子によって拡張された偏微分方程式を不連続なガレルキン(DG)空間離散化の文脈でシミュレートする際のサブグリッドスケールモデル効果の学習法を提案する。
提案手法は,低次DGソルバの欠落スケールを連続的に学習し,低次DG近似の精度を向上させるとともに,フィルタされた高次DGシミュレーションをある程度の精度で高速化する。
我々は,多次元テイラー・グリーン渦の実例をレイノルズ数と時間で示し,ラミナー,遷移,乱流を網羅する手法を提案する。
提案手法は,低次 (1次) 近似からサブグリッドスケールを再構成するだけでなく,フィルタ付き高次 dg (6次) シミュレーションを2桁高速化する。
関連論文リスト
- A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
本稿では,モデル制約付き不連続なGalerkin Network (DGNet) アプローチを提案する。
DGNetの中核は、いくつかの重要な戦略のシナジーである。
1次元および2次元圧縮可能なオイラー方程式問題に対する包括的数値計算結果を提案する。
論文 参考訳(メタデータ) (2024-09-27T01:13:38Z) - Physics-Informed Generator-Encoder Adversarial Networks with Latent
Space Matching for Stochastic Differential Equations [14.999611448900822]
微分方程式における前方・逆・混合問題に対処するために,新しい物理情報ニューラルネットワークのクラスを提案する。
我々のモデルは、ジェネレータとエンコーダの2つのキーコンポーネントで構成され、どちらも勾配降下によって交互に更新される。
従来の手法とは対照的に、より低次元の潜在特徴空間内で機能する間接マッチングを用いる。
論文 参考訳(メタデータ) (2023-11-03T04:29:49Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
偏微分方程式(PDE)をシミュレートする際のサブグリッドスケールモデル学習のための新しい手法を提案する。
このアプローチでは、ニューラルネットワークは粗大から細小のグリッドマップを学習するために使用され、これはサブグリッドスケールのパラメータ化と見なすことができる。
提案手法はNODEの利点を継承し,サブグリッドスケールのパラメータ化,近似結合演算子,低次解法の効率向上に利用することができる。
論文 参考訳(メタデータ) (2022-12-20T02:45:09Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast
Training and Evaluation of Neural ODEs [22.976119802895017]
ニューラル常微分方程式(NODE)の学習のためのデータ駆動型アプローチを提案する。
提案手法は,低階テイラー展開のみを用いながら,適応的なステップサイズスキームと同じ精度を実現する。
一連の数値実験により、TL-NODEは最先端のアプローチよりも桁違いに高速に訓練できることが示されている。
論文 参考訳(メタデータ) (2022-01-14T23:56:19Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。