論文の概要: Persona-driven Dominant/Submissive Map (PDSM) Generation for Tutorials
- arxiv url: http://arxiv.org/abs/2204.05217v1
- Date: Mon, 11 Apr 2022 16:01:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-12 16:08:49.748876
- Title: Persona-driven Dominant/Submissive Map (PDSM) Generation for Tutorials
- Title(参考訳): 教師のためのペルソナ駆動支配マップ(PDSM)の作成
- Authors: Michael Cerny Green, Ahmed Khalifa, M Charity, and Julian Togelius
- Abstract要約: 本稿では,自動ペルソナ駆動型ビデオゲームチュートリアルレベル生成手法を提案する。
手続き的ペルソナを用いて進化するレベルの行動特性を計算する。
この研究の中で、生成された地図は、異なるペルソナのような振る舞いを強く促したり、妨げたりする可能性があることを示す。
- 参考スコア(独自算出の注目度): 5.791285538179053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a method for automated persona-driven video game
tutorial level generation. Tutorial levels are scenarios in which the player
can explore and discover different rules and game mechanics. Procedural
personas can guide generators to create content which encourages or discourages
certain playstyle behaviors. In this system, we use procedural personas to
calculate the behavioral characteristics of levels which are evolved using the
quality-diversity algorithm known as Constrained MAP-Elites. An evolved map's
quality is determined by its simplicity: the simpler it is, the better it is.
Within this work, we show that the generated maps can strongly encourage or
discourage different persona-like behaviors and range from simple solutions to
complex puzzle-levels, making them perfect candidates for a tutorial generative
system.
- Abstract(参考訳): 本稿では,自動ペルソナ駆動型ビデオゲームチュートリアルのレベル生成手法を提案する。
チュートリアルレベルは、プレイヤーが異なるルールやゲームメカニックを探索し発見できるシナリオである。
手続き型ペルソナ(procedural persona)は、ジェネレータを誘導して、特定のプレイスタイル動作を奨励または抑止するコンテンツを作成することができる。
本システムでは、プロシージャペルソナを用いて、制約付きMAP-Elitesと呼ばれる品質多様性アルゴリズムを用いて進化するレベルの行動特性を算出する。
進化したマップの品質はその単純さによって決定されます。
本研究では,生成した地図がペルソナ的な振る舞いを強く促進あるいは阻止し,簡単な解法から複雑なパズルレベルまで,チュートリアル生成システムの完璧な候補となることを示す。
関連論文リスト
- Generative Personas That Behave and Experience Like Humans [3.611888922173257]
生成AIエージェントは、ルール、報酬、または人間のデモンストレーションとして表される特定の演奏行動の模倣を試みる。
我々は、行動手続き的ペルソナの概念をプレイヤー体験に適応させるよう拡張し、プレイヤーが人間のように行動し、経験できる生成エージェントを調べる。
その結果, 生成したエージェントは, 模倣を意図した人物のプレイスタイルや経験的反応を呈することが示唆された。
論文 参考訳(メタデータ) (2022-08-26T12:04:53Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - Generating Lode Runner Levels by Learning Player Paths with LSTMs [2.199085230546853]
本稿では,人間的な経路を学習し,その経路に基づいてレベルを生成することによって,課題に対処しようとする。
ゲームプレイビデオからプレーヤパスデータを抽出し、LSTMをトレーニングし、このデータに基づいて新たなパスを生成し、このパスデータに基づいてゲームレベルを生成する。
我々は,既存のPCGMLアプローチと比較して,ゲームLode Runnerのコヒーレントなレベルが向上することが実証された。
論文 参考訳(メタデータ) (2021-07-27T00:48:30Z) - Policy Fusion for Adaptive and Customizable Reinforcement Learning
Agents [137.86426963572214]
異なる行動政策を結合して有意義な「融合」政策を得る方法を示す。
事前学習されたポリシーを組み合わせるための4つの異なるポリシー融合手法を提案する。
これらの手法がゲーム制作や設計に実際どのように役立つのか,実例とユースケースをいくつか紹介する。
論文 参考訳(メタデータ) (2021-04-21T16:08:44Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree [55.41644538483948]
本稿では,複雑な現象の言語記述に基づく模倣による新しい機械学習モデルを提案する。
この手法は,ゲーム開発における知的エージェントの動作を設計し,実装するための優れた代替手段となる。
論文 参考訳(メタデータ) (2021-01-06T21:14:10Z) - Learning Propagation Rules for Attribution Map Generation [146.71503336770886]
本稿では,属性マップを生成する専用手法を提案する。
具体的には,各ピクセルに対して適応的な伝搬規則を可能にする学習可能なプラグインモジュールを提案する。
導入された学習可能なモジュールは、高階差分サポートを備えた任意のオートグレードフレームワークでトレーニングすることができる。
論文 参考訳(メタデータ) (2020-10-14T16:23:58Z) - Illuminating Mario Scenes in the Latent Space of a Generative
Adversarial Network [11.055580854275474]
設計者は,我々のシステムにゲームプレイ対策を規定し,様々なレベルのメカニックで高品質な(プレイ可能な)レベルを抽出する方法を示す。
オンラインユーザスタディでは、自動生成されるレベルの異なるメカニズムが、認識される困難さと外観の主観的評価にどのように影響するかが示されている。
論文 参考訳(メタデータ) (2020-07-11T03:38:06Z) - Finding Game Levels with the Right Difficulty in a Few Trials through
Intelligent Trial-and-Error [16.297059109611798]
ダイナミックな難易度調整の方法は、ゲームが特定のプレイヤーに調整されてエンゲージメントを最大化することを可能にする。
現在の手法では、相手の難易度やリソースの可利用性など、限られたゲーム機能だけを変更していることが多い。
本稿では,数回の試行で特定の目的の難易度で完全なレベルを生成・探索できる手法を提案する。
論文 参考訳(メタデータ) (2020-05-15T17:48:18Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
本稿では,競争力のあるマルチプレイヤーカードゲームの現実的な実装を学習・プレイするために,一般的な強化学習アルゴリズムをどのように適用できるかについて検討する。
本研究は,学習エージェントに対して,エージェントが競争力を持つことの学習方法を評価するための特定のトレーニングと検証ルーチンを提案し,それらが相互の演奏スタイルにどのように適応するかを説明する。
論文 参考訳(メタデータ) (2020-04-08T14:11:05Z) - Learning to Generate Levels From Nothing [5.2508303190856624]
演奏レベルを設計するジェネレーティブ・プレイング・ネットワークを提案する。
このアルゴリズムは、ゲームのレベルを学習するエージェントと、プレイ可能なレベルの分布を学習するジェネレータの2つの部分で構成されている。
本研究では,2次元ダンジョンクローラゲームにおけるエージェントとレベルジェネレータの訓練により,このフレームワークの能力を示す。
論文 参考訳(メタデータ) (2020-02-12T22:07:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。