論文の概要: Illuminating Mario Scenes in the Latent Space of a Generative
Adversarial Network
- arxiv url: http://arxiv.org/abs/2007.05674v4
- Date: Mon, 21 Jun 2021 04:14:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 13:25:42.279016
- Title: Illuminating Mario Scenes in the Latent Space of a Generative
Adversarial Network
- Title(参考訳): 生成的敵ネットワークの潜在空間におけるマリオシーンのイルミネーション
- Authors: Matthew C. Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian
Togelius, Amy K. Hoover, Stefanos Nikolaidis
- Abstract要約: 設計者は,我々のシステムにゲームプレイ対策を規定し,様々なレベルのメカニックで高品質な(プレイ可能な)レベルを抽出する方法を示す。
オンラインユーザスタディでは、自動生成されるレベルの異なるメカニズムが、認識される困難さと外観の主観的評価にどのように影響するかが示されている。
- 参考スコア(独自算出の注目度): 11.055580854275474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) are quickly becoming a ubiquitous
approach to procedurally generating video game levels. While GAN generated
levels are stylistically similar to human-authored examples, human designers
often want to explore the generative design space of GANs to extract
interesting levels. However, human designers find latent vectors opaque and
would rather explore along dimensions the designer specifies, such as number of
enemies or obstacles. We propose using state-of-the-art quality diversity
algorithms designed to optimize continuous spaces, i.e. MAP-Elites with a
directional variation operator and Covariance Matrix Adaptation MAP-Elites, to
efficiently explore the latent space of a GAN to extract levels that vary
across a set of specified gameplay measures. In the benchmark domain of Super
Mario Bros, we demonstrate how designers may specify gameplay measures to our
system and extract high-quality (playable) levels with a diverse range of level
mechanics, while still maintaining stylistic similarity to human authored
examples. An online user study shows how the different mechanics of the
automatically generated levels affect subjective ratings of their perceived
difficulty and appearance.
- Abstract(参考訳): generative adversarial networks(gans)は、ゲームレベルを手続き的に生成するユビキタスなアプローチになりつつある。
GAN生成レベルは、人間の許可した例とスタイリスティックに類似しているが、人間設計者は、興味深いレベルを抽出するために、GANの生成的デザイン空間を探索したいと考えることが多い。
しかし、人間の設計者は潜伏ベクトルが不透明で、敵の数や障害物など、設計者が指定する次元に沿って探索する。
本稿では,方向性変動演算子と共分散行列適応マップエリトを含む連続空間を最適化するために設計された最先端品質多様性アルゴリズムを用いて,ganの潜在空間を効率的に探索し,特定のゲームプレイ測度のセットにまたがるレベルを抽出する。
super mario brosのベンチマークドメインでは、設計者が私たちのシステムにゲームプレイの測度を指定でき、様々なレベルメカニクスで高品質な(プレイ可能な)レベルを抽出する方法が示されています。
オンラインユーザスタディでは、自動生成されるレベルの異なるメカニズムが、認識される困難と外観の主観的評価にどのように影響するかが示されている。
関連論文リスト
- SceneHGN: Hierarchical Graph Networks for 3D Indoor Scene Generation
with Fine-Grained Geometry [92.24144643757963]
3D屋内シーンは、インテリアデザインからゲーム、バーチャルおよび拡張現実に至るまで、コンピュータグラフィックスで広く使われている。
高品質な3D屋内シーンは、専門知識が必要であり、手動で高品質な3D屋内シーンを設計するのに時間を要する。
SCENEHGNは3次元屋内シーンの階層的なグラフネットワークであり,部屋レベルからオブジェクトレベルまでの全階層を考慮し,最後にオブジェクト部分レベルに展開する。
提案手法は, 立体形状の細かな家具を含む, 可塑性3次元室内容を直接生成し, 直接的に生成することができる。
論文 参考訳(メタデータ) (2023-02-16T15:31:59Z) - Spatial Steerability of GANs via Self-Supervision from Discriminator [123.27117057804732]
本稿では,GANの空間的ステアビリティを向上させるための自己教師型アプローチを提案する。
具体的には、空間帰納バイアスとして生成モデルの中間層に符号化されるランダムなガウス熱マップを設計する。
推論中、ユーザは直感的に空間のヒートマップと対話し、シーンのレイアウトを調整したり、移動したり、オブジェクトを削除したりすることで、出力画像を編集することができる。
論文 参考訳(メタデータ) (2023-01-20T07:36:29Z) - Mario Plays on a Manifold: Generating Functional Content in Latent Space
through Differential Geometry [7.863826008567604]
本稿では,カテゴリVAEの潜在空間における信頼度とランダムウォークの手法を提案する。
われわれはスーパーマリオブラザーズ』と『ゼルダ伝説』でテストを行った。
その結果、我々が提案する幾何学は補間とサンプリングがより良くなり、再生可能なコンテンツにデコードする潜在空間の一部に確実に近づいた。
論文 参考訳(メタデータ) (2022-05-31T20:39:56Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - EigenGAN: Layer-Wise Eigen-Learning for GANs [84.33920839885619]
EigenGANは、異なる発電機層から解釈可能で制御可能な寸法を無監督にマイニングすることができます。
特定の固有次元の係数をトラバースすることで、ジェネレータは特定の意味属性に対応する連続的な変化を伴うサンプルを生成することができる。
論文 参考訳(メタデータ) (2021-04-26T11:14:37Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Level Generation for Angry Birds with Sequential VAE and Latent Variable
Evolution [25.262831218008202]
我々は,Angry Birdsのゲームドメインに対して,深部生成モデルに基づくレベル生成を開発する。
実験により,提案したレベルジェネレータは生成レベルの安定性と多様性を大幅に改善することが示された。
論文 参考訳(メタデータ) (2021-04-13T11:23:39Z) - Generating and Blending Game Levels via Quality-Diversity in the Latent
Space of a Variational Autoencoder [7.919213739992465]
ここでは,vaesアルゴリズムとqdアルゴリズムを組み合わせたレベル生成とゲームブレンド手法を提案する。
具体的には,ゲームレベルでVAEをトレーニングし,学習したVAEの潜在空間を探索空間としてMAP-Elites QDアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-02-24T18:44:23Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
例えばRoguelikesのようなターンベースの戦略ゲームは、Deep Reinforcement Learning(DRL)にユニークな課題を提示する。
複雑なカテゴリ状態空間をより適切に処理し、設計決定によって強制的に再訓練する必要性を緩和する2つのネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-07T08:47:25Z) - Interactive Evolution and Exploration Within Latent Level-Design Space
of Generative Adversarial Networks [8.091708140619946]
潜在変数進化(LVE)は、最近ゲームレベルに適用されている。
本稿では,ゲーム用タイルベースレベルのインタラクティブなLVEツールを提案する。
このツールは、潜伏次元の直接探索も可能で、ユーザーは発見レベルをプレイできる。
論文 参考訳(メタデータ) (2020-03-31T22:52:17Z) - Controllable Level Blending between Games using Variational Autoencoders [6.217860411034386]
スーパーマリオブラザーズとキッド・イカラスのレベルデータに基づいてVAEをトレーニングし、両方のゲームにまたがる潜伏空間を捕捉できるようにします。
次に、この空間を用いて、両方のゲームからレベルの特性を組み合わせたレベルセグメントを生成する。
これらの余裕は、特に共同創造的レベルの設計にVAEベースのアプローチを適していると我々は主張する。
論文 参考訳(メタデータ) (2020-02-27T01:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。