論文の概要: Position-wise optimizer: A nature-inspired optimization algorithm
- arxiv url: http://arxiv.org/abs/2204.05312v1
- Date: Mon, 11 Apr 2022 15:30:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 12:15:50.254270
- Title: Position-wise optimizer: A nature-inspired optimization algorithm
- Title(参考訳): 位置方向オプティマイザ : 自然に触発された最適化アルゴリズム
- Authors: Amir Valizadeh
- Abstract要約: 生物の神経可塑性を模倣する、自然に着想を得た新しい最適化アルゴリズムが導入された。
モデルは3つのデータセットでテストされ、結果は勾配降下最適化と比較される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The human nervous system utilizes synaptic plasticity to solve optimization
problems. Previous studies have tried to add the plasticity factor to the
training process of artificial neural networks, but most of those models
require complex external control over the network or complex novel rules. In
this manuscript, a novel nature-inspired optimization algorithm is introduced
that imitates biological neural plasticity. Furthermore, the model is tested on
three datasets and the results are compared with gradient descent optimization.
- Abstract(参考訳): ヒト神経系はシナプス可塑性を利用して最適化問題を解決する。
これまでの研究では、人工ニューラルネットワークのトレーニングプロセスに塑性因子を加えようと試みてきたが、ほとんどのモデルは複雑な外部制御を必要とする。
本稿では,生物の神経可塑性を模倣する,自然に着想を得た新しい最適化アルゴリズムを提案する。
さらに,モデルを3つのデータセット上でテストし,勾配降下最適化と比較した。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
ニューラル抽象化は、最近、複雑な非線形力学モデルの形式近似として導入されている。
我々は形式的帰納的合成法を用いて、これらのセマンティクスを用いた動的モデルをもたらすニューラル抽象化を生成する。
論文 参考訳(メタデータ) (2023-07-28T13:22:32Z) - Optimizing Neural Networks through Activation Function Discovery and
Automatic Weight Initialization [0.5076419064097734]
より強力なアクティベーション関数を 発見する技術を紹介します
ニューラルネットワークの最適化に関する新たな視点を提供する。
従って、論文は将来的に完全に自動化された機械学習へと具体的な進展をもたらす。
論文 参考訳(メタデータ) (2023-04-06T21:01:00Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
ニューラルネットワークモデルに埋め込まれた最適化問題に対して,物理情報を用いた線形ニューラルネットワークモデルの更新が提案されている。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
論文 参考訳(メタデータ) (2023-02-02T10:14:54Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Half-Inverse Gradients for Physical Deep Learning [25.013244956897832]
異なる物理シミュレータをトレーニングプロセスに統合することは、結果の質を大幅に向上させる。
勾配に基づく解法は、多くの物理過程の固有の性質であるスケールと方向を操作できるため、勾配流に深い影響を与える。
本研究では,この現象に苦しむことのない新しい手法を導出するために,物理・ニューラルネットワーク最適化の特性を解析する。
論文 参考訳(メタデータ) (2022-03-18T19:11:04Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks [14.380314061763508]
反復代理モデル最適化(ISMO)と呼ばれる新しい能動学習アルゴリズムを提案する。
このアルゴリズムはディープニューラルネットワークに基づいており、その重要な特徴は、ディープニューラルネットワークと基礎となる標準最適化アルゴリズムの間のフィードバックループを通じて、トレーニングデータの反復的な選択である。
論文 参考訳(メタデータ) (2020-08-13T07:31:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。