論文の概要: A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply
- arxiv url: http://arxiv.org/abs/2204.05545v1
- Date: Tue, 12 Apr 2022 06:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 12:44:30.008787
- Title: A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply
- Title(参考訳): 車両間供給による電気自動車走行問題に対する強化学習アプローチ
- Authors: Ajay Narayanan, Prasant Misra, Ankush Ojha, Vivek Bandhu, Supratim
Ghosh, Arunchandar Vasan
- Abstract要約: EVルーティングに強化学習(RL)を用いたQuikRouteFinderを提案する。
RLの結果は混合整数線形プログラム(MILP)と遺伝的アルゴリズム(GA)のメタヒューリスティックスに基づく正確な定式化と比較される。
- 参考スコア(独自算出の注目度): 2.6066825041242367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of electric vehicles (EV) in the last mile is appealing from both
sustainability and operational cost perspectives. In addition to the inherent
cost efficiency of EVs, selling energy back to the grid during peak grid
demand, is a potential source of additional revenue to a fleet operator. To
achieve this, EVs have to be at specific locations (discharge points) during
specific points in time (peak period), even while meeting their core purpose of
delivering goods to customers. In this work, we consider the problem of EV
routing with constraints on loading capacity; time window; vehicle-to-grid
energy supply (CEVRPTW-D); which not only satisfy multiple system objectives,
but also scale efficiently to large problem sizes involving hundreds of
customers and discharge stations. We present QuikRouteFinder that uses
reinforcement learning (RL) for EV routing to overcome these challenges. Using
Solomon datasets, results from RL are compared against exact formulations based
on mixed-integer linear program (MILP) and genetic algorithm (GA)
metaheuristics. On an average, the results show that RL is 24 times faster than
MILP and GA, while being close in quality (within 20%) to the optimal.
- Abstract(参考訳): ラストマイルでの電気自動車(ev)の使用は持続可能性と運用コストの両方の観点からアピールされている。
EVの原価効率に加えて、ピークグリッド需要時に電力をグリッドに戻すことは、フリートオペレーターへの追加収入源となる可能性がある。
これを実現するためには、EVは顧客への商品の配送という中核的な目的を満たしつつも、特定のポイント(所要時間)に特定の場所(ディスチャージポイント)に配置する必要がある。
本研究では,複数のシステム目標を満たした車両間エネルギー供給(cevrptw-d)の負荷容量,タイムウィンドウ,車両間電力供給(cevrptw-d)に制約のあるevルーティングの問題を考える。
EVルーティングに強化学習(RL)を用いたQuikRouteFinderを提案する。
ソロモンデータセットを用いて、RLの結果を混合整数線形プログラム(MILP)と遺伝的アルゴリズム(GA)のメタヒューリスティックスに基づく正確な定式化と比較する。
その結果、RLはMILPとGAの24倍の速さで、品質(20%)は最適であることがわかった。
関連論文リスト
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Electric Vehicles coordination for grid balancing using multi-objective
Harris Hawks Optimization [0.0]
再生可能エネルギーの台頭は、地域グリッドのエネルギー収支に技術的および運用上の課題をもたらす電気自動車(EV)へのシフトと一致している。
複数のEVからグリッドへの電力フローの調整には、高度なアルゴリズムとロードバランシング戦略が必要である。
本稿では,安定した電力供給と安定したローカルグリッドの維持を目標として,一日のEVフリート調整モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T15:50:37Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
電気自動車ルーティング問題(EVRP)は、燃料ベースの車からより健康的で効率的な電気自動車(EV)に移行するために、研究者や工業者から大きな関心を集めている。
以前の作業では、ロジスティクスや配送関連のソリューションをターゲットにしており、複数の停止を行った後、同質の商用EVが最初のポイントに戻らなければならない。
我々は、旅行時間と充電の累積コストを最小化する多目的最適化を行う。
論文 参考訳(メタデータ) (2022-08-26T05:09:59Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
都市部では環境汚染と地球温暖化を減らすために電気自動車(EV)が採用されている。
社会と経済の持続可能性に影響を与え続けているラストマイルロジスティクスの軌道をルーティングするのにはまだ不足がある。
本稿では,高ヒューリスティック適応アニーリングと強化学習というハイパーヒューリスティックなアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-07T11:10:38Z) - Computationally efficient joint coordination of multiple electric
vehicle charging points using reinforcement learning [6.37470346908743]
今日の電力網における大きな課題は、電気自動車(EV)充電による負荷の増加を管理することである。
同時に複数の充電点を協調的に座標する単一ステップの解法を提案する。
我々の新しいRLソリューションは、ビジネス・アズ・ユース・ポリシーと比較して、充電需要調整の性能を40~50%向上させています。
論文 参考訳(メタデータ) (2022-03-26T13:42:57Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
輸送部門から排出される温室効果ガスの増加は、企業や政府が電気自動車(EV)の増産と支援を図っている。
近年の都市化と電子商取引の進展により、輸送会社は従来の車両をEVに置き換え、持続的で環境に優しい運転の取り組みを強化している。
EV車両の展開は、限られた範囲を緩和し、バッテリー劣化率を軽減するために、効率的なルーティングと充電戦略を要求する。
論文 参考訳(メタデータ) (2020-08-07T18:45:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。