論文の概要: Nonparametric Embeddings of Sparse High-Order Interaction Events
- arxiv url: http://arxiv.org/abs/2207.03639v1
- Date: Fri, 8 Jul 2022 01:25:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-11 13:12:30.934073
- Title: Nonparametric Embeddings of Sparse High-Order Interaction Events
- Title(参考訳): スパース高次相互作用事象の非パラメトリック埋め込み
- Authors: Zheng Wang, Yiming Xu, Conor Tillinghast, Shibo Li, Akil Narayan,
Shandian Zhe
- Abstract要約: 高次相互作用イベントは現実世界のアプリケーションでは一般的である。
スパース高次相互作用イベントの非埋め込みを提案する。
我々は効率的でスケーラブルなモデル推論アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 21.758306786651772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-order interaction events are common in real-world applications. Learning
embeddings that encode the complex relationships of the participants from these
events is of great importance in knowledge mining and predictive tasks. Despite
the success of existing approaches, e.g. Poisson tensor factorization, they
ignore the sparse structure underlying the data, namely the occurred
interactions are far less than the possible interactions among all the
participants. In this paper, we propose Nonparametric Embeddings of Sparse
High-order interaction events (NESH). We hybridize a sparse hypergraph (tensor)
process and a matrix Gaussian process to capture both the asymptotic structural
sparsity within the interactions and nonlinear temporal relationships between
the participants. We prove strong asymptotic bounds (including both a lower and
an upper bound) of the sparsity ratio, which reveals the asymptotic properties
of the sampled structure. We use batch-normalization, stick-breaking
construction, and sparse variational GP approximations to develop an efficient,
scalable model inference algorithm. We demonstrate the advantage of our
approach in several real-world applications.
- Abstract(参考訳): 高次相互作用イベントは現実世界のアプリケーションでは一般的である。
これらのイベントから参加者の複雑な関係をエンコードする学習埋め込みは、知識マイニングや予測タスクにおいて非常に重要である。
ポアソンテンソル因子化のような既存のアプローチの成功にもかかわらず、彼らはデータの基礎となるスパース構造を無視している。
本稿では,スパース高次相互作用イベント(NESH)の非パラメトリック埋め込みを提案する。
我々はスパースハイパーグラフ(テンソル)過程と行列ガウス過程をハイブリダイズし、相互作用中の漸近的構造空間と参加者間の非線形時間的関係の両方を捉える。
我々は, サンプル構造の漸近特性を明らかにするため, 疎度比の強い漸近境界(下界と上界の両方を含む)を証明した。
我々は,効率的なスケーラブルなモデル推論アルゴリズムを開発するために,バッチ正規化,スティックブレーク構成,スパース変分gp近似を用いる。
いくつかの実世界のアプリケーションで、我々のアプローチの利点を実証する。
関連論文リスト
- Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach [12.142292322071299]
本研究は,マルチリレーショナル再帰的ハイパーグラフにおける高次相互作用事象の予測問題に対処する。
提案したモデルであるtextitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP) は,歴史的相互作用パターンに基づいて動的ノード表現を学習するエンコーダを使用する。
我々は,従来のインタラクション予測手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-04-27T15:46:54Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - Interaction Measures, Partition Lattices and Kernel Tests for High-Order
Interactions [1.9457612782595313]
2つ以上の変数のグループ間の非自明な依存関係は、そのようなシステムの分析とモデリングにおいて重要な役割を果たす。
我々は、結合確率分布の因数分解をますます含む、$d$-order$d geq 2$)相互作用測度の階層を導入する。
また、相互作用測度とそれらの複合置換試験の導出を解明する格子理論と数学的リンクを確立する。
論文 参考訳(メタデータ) (2023-06-01T16:59:37Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
本稿では,従来の手法と比較して2つの特徴を持つ関係推論の確率的手法を提案する。
提案手法を複数のベンチマークデータセットで評価し,既存の手法よりも精度良く対話型を推定できることを実証した。
全体として、提案モデルはデータ効率が高く、より小さなシステムで訓練された場合、大規模システムに対して一般化可能である。
論文 参考訳(メタデータ) (2023-04-30T19:45:04Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Principled inference of hyperedges and overlapping communities in
hypergraphs [0.0]
本稿では,ハイパーグラフの構造的構造を特徴付けるための統計的推測に基づく枠組みを提案する。
我々は,ハイパーエッジ予測タスクにおいて強い性能を示し,相互作用によってもたらされる情報に順応したコミュニティの検出,ノイズの多いハイパーエッジの追加に対する堅牢性を示した。
論文 参考訳(メタデータ) (2022-04-12T09:13:46Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
マルチプライカテゴリにおける異種エージェントの軌跡を予測できる,シンプルで効果的な非境界相互作用ネットワーク (UNIN) を提案する。
具体的には、提案した無制限近傍相互作用モジュールは、相互作用に関与するすべてのエージェントの融合特徴を同時に生成する。
階層型グラフアテンションモジュールを提案し,カテゴリ間相互作用とエージェント間相互作用を求める。
論文 参考訳(メタデータ) (2021-07-31T13:36:04Z) - Joint Constrained Learning for Event-Event Relation Extraction [94.3499255880101]
本稿では,イベント・イベント関係をモデル化するための制約付き協調学習フレームワークを提案する。
具体的には、このフレームワークは、複数の時間的および部分的関係内の論理的制約を強制する。
我々は,共同学習手法が,共同ラベル付きデータの欠如を効果的に補うことを示す。
論文 参考訳(メタデータ) (2020-10-13T22:45:28Z) - Efficient Inference of Flexible Interaction in Spiking-neuron Networks [41.83710212492543]
非線形ホークス法を用いて、ニューロン間の興奮的または抑制的な相互作用をモデル化する。
提案アルゴリズムは, 相互作用の時間的ダイナミクスを推定し, ニューラルスパイク列の根底にある機能的接続を明らかにする。
論文 参考訳(メタデータ) (2020-06-23T09:10:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。