論文の概要: A Robust Learning Rule for Soft-Bounded Memristive Synapses Competitive
with Supervised Learning in Standard Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2204.05682v1
- Date: Tue, 12 Apr 2022 10:21:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 20:28:53.172153
- Title: A Robust Learning Rule for Soft-Bounded Memristive Synapses Competitive
with Supervised Learning in Standard Spiking Neural Networks
- Title(参考訳): 標準スパイクニューラルネットワークにおける教師付き学習と競合するソフトバウンドのmemristive synapsesに対するロバストな学習規則
- Authors: Thomas F. Tiotto, Jelmer P. Borst and Niels A. Taatgen
- Abstract要約: 理論神経科学における見解は、脳を機能計算装置と見なしている。
関数を近似できることは、将来の脳研究のための基礎となる公理である。
本研究では,非自明な多次元関数の学習に,ニオブをドープしたチタン酸ストロンチウムの旋律的シナプスを制御した新しい教師付き学習アルゴリズムを適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memristive devices are a class of circuit elements that shows great promise
as future building block for brain-inspired computing. One influential view in
theoretical neuroscience sees the brain as a function-computing device: given
input signals, the brain applies a function in order to generate new internal
states and motor outputs. Therefore, being able to approximate functions is a
fundamental axiom to build upon for future brain research and to derive more
efficient computational machines. In this work we apply a novel supervised
learning algorithm - based on controlling niobium-doped strontium titanate
memristive synapses - to learning non-trivial multidimensional functions. By
implementing our method into the spiking neural network simulator Nengo, we
show that we are able to at least match the performance obtained when using
ideal, linear synapses and - in doing so - that this kind of memristive device
can be harnessed as computational substrate to move towards more efficient,
brain-inspired computing.
- Abstract(参考訳): memristive devicesは、脳にインスパイアされたコンピューティングの将来の構築ブロックとして大きな可能性を秘めている回路要素のクラスである。
理論神経科学において、脳は機能計算装置であり、入力信号が与えられたとき、脳は新しい内部状態と運動出力を生成するために機能を適用する。
したがって、関数を近似できることは、将来の脳研究のために構築し、より効率的な計算機械を導き出すための基本的な公理である。
本研究では,非自明な多次元関数の学習に,ニオブをドープしたチタン酸ストロンチウムの旋律的シナプスを制御する新しい教師付き学習アルゴリズムを適用する。
本手法をspiking neural network simulator nengoに実装することにより,理想的かつ線形なシナプスを用いて得られた性能を少なくとも一致させることができること,および,このようなmemristive deviceを計算基盤として活用することで,より効率的で脳に触発された計算へと移行できることを示す。
関連論文リスト
- Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - A Neural Lambda Calculus: Neurosymbolic AI meets the foundations of
computing and functional programming [0.0]
我々は、プログラム全体の実行方法を学ぶニューラルネットワークの能力を分析する。
統合型ニューラルラーニングと電卓形式化の導入について紹介する。
論文 参考訳(メタデータ) (2023-04-18T20:30:16Z) - Sequence learning in a spiking neuronal network with memristive synapses [0.0]
脳計算の中心にある中核的な概念は、シーケンス学習と予測である。
ニューロモルフィックハードウェアは、脳が情報を処理する方法をエミュレートし、ニューロンとシナプスを直接物理的基質にマッピングする。
シークエンス学習モデルにおける生物学的シナプスの代替としてReRAMデバイスを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2022-11-29T21:07:23Z) - Encoding Integers and Rationals on Neuromorphic Computers using Virtual
Neuron [0.0]
仮想ニューロンを整数と有理数の符号化機構として提示する。
本研究では,23nJのエネルギーを混合信号メムリスタベースニューロモルフィックプロセッサを用いて平均的に加算操作を行うことができることを示す。
論文 参考訳(メタデータ) (2022-08-15T23:18:26Z) - Memory-enriched computation and learning in spiking neural networks
through Hebbian plasticity [9.453554184019108]
ヘビアン可塑性は生物学的記憶において重要な役割を担っていると考えられている。
本稿では,ヘビーンのシナプス可塑性に富む新しいスパイクニューラルネットワークアーキテクチャを提案する。
ヘビーンの豊かさは、ニューラルネットワークの計算能力と学習能力の点で驚くほど多彩であることを示す。
論文 参考訳(メタデータ) (2022-05-23T12:48:37Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Neurocoder: Learning General-Purpose Computation Using Stored Neural
Programs [64.56890245622822]
ニューロコーダ(Neurocoder)は、汎用計算機の全く新しいクラスである。
共有可能なモジュール型プログラムのセットから関連するプログラムを構成することで、データ応答性のある方法で“コード”を行う。
モジュールプログラムを学習し、パターンシフトを厳しく処理し、新しいプログラムが学習されると、古いプログラムを記憶する新しい能力を示す。
論文 参考訳(メタデータ) (2020-09-24T01:39:16Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
機械学習は、特にディープラーニングの形で、人工知能の最近の基本的な発展のほとんどを駆動している。
ディープラーニングは、オブジェクト/パターン認識、音声と自然言語処理、自動運転車、インテリジェントな自己診断ツール、自律ロボット、知識に富んだパーソナルアシスタント、監視といった分野に成功している。
本稿では、電力効率の高いインメモリコンピューティング、ディープラーニングアクセラレーター、スパイクニューラルネットワークの実装のための潜在的なソリューションとして、CMOSハードウェア技術、memristorsを超越した小説をレビューする。
論文 参考訳(メタデータ) (2020-04-30T16:49:03Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。