論文の概要: A Neural Lambda Calculus: Neurosymbolic AI meets the foundations of
computing and functional programming
- arxiv url: http://arxiv.org/abs/2304.09276v1
- Date: Tue, 18 Apr 2023 20:30:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 16:15:25.186343
- Title: A Neural Lambda Calculus: Neurosymbolic AI meets the foundations of
computing and functional programming
- Title(参考訳): ニューラルラムダ計算:ニューロシンボリックAIはコンピューティングと関数型プログラミングの基礎を満たす
- Authors: Jo\~ao Flach and Luis C. Lamb
- Abstract要約: 我々は、プログラム全体の実行方法を学ぶニューラルネットワークの能力を分析する。
統合型ニューラルラーニングと電卓形式化の導入について紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last decades, deep neural networks based-models became the dominant
paradigm in machine learning. Further, the use of artificial neural networks in
symbolic learning has been seen as increasingly relevant recently. To study the
capabilities of neural networks in the symbolic AI domain, researchers have
explored the ability of deep neural networks to learn mathematical
constructions, such as addition and multiplication, logic inference, such as
theorem provers, and even the execution of computer programs. The latter is
known to be too complex a task for neural networks. Therefore, the results were
not always successful, and often required the introduction of biased elements
in the learning process, in addition to restricting the scope of possible
programs to be executed. In this work, we will analyze the ability of neural
networks to learn how to execute programs as a whole. To do so, we propose a
different approach. Instead of using an imperative programming language, with
complex structures, we use the Lambda Calculus ({\lambda}-Calculus), a simple,
but Turing-Complete mathematical formalism, which serves as the basis for
modern functional programming languages and is at the heart of computability
theory. We will introduce the use of integrated neural learning and lambda
calculi formalization. Finally, we explore execution of a program in
{\lambda}-Calculus is based on reductions, we will show that it is enough to
learn how to perform these reductions so that we can execute any program.
Keywords: Machine Learning, Lambda Calculus, Neurosymbolic AI, Neural Networks,
Transformer Model, Sequence-to-Sequence Models, Computational Models
- Abstract(参考訳): 過去数十年間、ディープニューラルネットワークベースのモデルが機械学習の主要なパラダイムとなった。
さらに、記号学習におけるニューラルネットワークの利用は、近年ますます関連性が高まっている。
記号型AI領域におけるニューラルネットワークの能力を研究するために、研究者たちは、加算や乗算、論理推論、定理証明器のような論理推論、さらにはコンピュータプログラムの実行など、深層ニューラルネットワークが数学的構造を学ぶ能力を探った。
後者は、ニューラルネットワークのタスクが複雑すぎることが知られている。
したがって、結果は必ずしも成功せず、実行可能なプログラムの範囲を制限することに加えて、学習プロセスに偏りのある要素の導入をしばしば必要としていた。
本研究では,ニューラルネットワークによるプログラム全体の実行方法の学習について分析する。
そこで我々は,異なるアプローチを提案する。
複雑な構造を持つ命令型プログラミング言語を使う代わりに、ラムダ計算({\lambda}-calculus)は、現代の関数型プログラミング言語の基礎であり、計算可能性理論の中心である、単純だがチューリング完全な数学的形式論である。
統合型ニューラルネットワークとラムダ計算の形式化について紹介する。
最後に, {\lambda} 計算におけるプログラムの実行を還元法に基づいて検討し,この還元法を学習してプログラムを実行できることを示す。
キーワード:機械学習、ラムダ計算、ニューロシンボリックAI、ニューラルネットワーク、トランスフォーマーモデル、シーケンスからシーケンスモデル、計算モデル
関連論文リスト
- Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
ニューラルネットワークにおけるアルゴリズム発見は、時としてより複雑であることを示す。
単純な学習問題でさえ、驚くほど多様なソリューションを許容できることが示されています。
論文 参考訳(メタデータ) (2023-06-30T17:59:13Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
我々は過去10年間の数学的推論とディープラーニングの交差点における重要なタスク、データセット、方法についてレビューする。
大規模ニューラルネットワークモデルの最近の進歩は、新しいベンチマークと、数学的推論にディープラーニングを使用する機会を開放している。
論文 参考訳(メタデータ) (2022-12-20T18:46:16Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - A Robust Learning Rule for Soft-Bounded Memristive Synapses Competitive
with Supervised Learning in Standard Spiking Neural Networks [0.0]
理論神経科学における見解は、脳を機能計算装置と見なしている。
関数を近似できることは、将来の脳研究のための基礎となる公理である。
本研究では,非自明な多次元関数の学習に,ニオブをドープしたチタン酸ストロンチウムの旋律的シナプスを制御した新しい教師付き学習アルゴリズムを適用する。
論文 参考訳(メタデータ) (2022-04-12T10:21:22Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
ディープニューラルネットワークのトレーニングに使用されるエラーアルゴリズムのバックプロパゲーションは、ディープラーニングの成功に不可欠である。
最近の研究は、このアイデアを、局所的な計算だけでニューラルネットワークを訓練できる汎用アルゴリズムへと発展させた。
等価ディープニューラルネットワークに対する予測符号化ネットワークの柔軟性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-02-18T22:57:03Z) - Neurocoder: Learning General-Purpose Computation Using Stored Neural
Programs [64.56890245622822]
ニューロコーダ(Neurocoder)は、汎用計算機の全く新しいクラスである。
共有可能なモジュール型プログラムのセットから関連するプログラムを構成することで、データ応答性のある方法で“コード”を行う。
モジュールプログラムを学習し、パターンシフトを厳しく処理し、新しいプログラムが学習されると、古いプログラムを記憶する新しい能力を示す。
論文 参考訳(メタデータ) (2020-09-24T01:39:16Z) - Extending Answer Set Programs with Neural Networks [2.512827436728378]
ニューラルネットワークを導入することで、応答セットプログラムをシンプルに拡張するNeurASPを提案する。
我々は、NeurASPがトレーニング済みニューラルネットワークの知覚精度を向上できるだけでなく、論理ルールによる制約を与えることで、ニューラルネットワークをより良くトレーニングできることを示した。
論文 参考訳(メタデータ) (2020-09-22T00:52:30Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
機械学習は、特にディープラーニングの形で、人工知能の最近の基本的な発展のほとんどを駆動している。
ディープラーニングは、オブジェクト/パターン認識、音声と自然言語処理、自動運転車、インテリジェントな自己診断ツール、自律ロボット、知識に富んだパーソナルアシスタント、監視といった分野に成功している。
本稿では、電力効率の高いインメモリコンピューティング、ディープラーニングアクセラレーター、スパイクニューラルネットワークの実装のための潜在的なソリューションとして、CMOSハードウェア技術、memristorsを超越した小説をレビューする。
論文 参考訳(メタデータ) (2020-04-30T16:49:03Z) - Self learning robot using real-time neural networks [7.347989843033033]
本稿では,ロボットの腕に実装されたニューラルネットワークの研究,開発,実験的解析を行う。
ニューラルネットワークは、グラディエントDescentとバックプロパゲーションのアルゴリズムを用いて学習する。
ニューラルネットワークの実装とトレーニングは、Raspberry pi 3上のロボット上でローカルに行われ、学習プロセスは完全に独立している。
論文 参考訳(メタデータ) (2020-01-06T13:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。