論文の概要: Memory-enriched computation and learning in spiking neural networks
through Hebbian plasticity
- arxiv url: http://arxiv.org/abs/2205.11276v1
- Date: Mon, 23 May 2022 12:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 06:18:39.426612
- Title: Memory-enriched computation and learning in spiking neural networks
through Hebbian plasticity
- Title(参考訳): ヘビアン可塑性によるスパイキングニューラルネットワークのメモリ強化計算と学習
- Authors: Thomas Limbacher, Ozan \"Ozdenizci, Robert Legenstein
- Abstract要約: ヘビアン可塑性は生物学的記憶において重要な役割を担っていると考えられている。
本稿では,ヘビーンのシナプス可塑性に富む新しいスパイクニューラルネットワークアーキテクチャを提案する。
ヘビーンの豊かさは、ニューラルネットワークの計算能力と学習能力の点で驚くほど多彩であることを示す。
- 参考スコア(独自算出の注目度): 9.453554184019108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memory is a key component of biological neural systems that enables the
retention of information over a huge range of temporal scales, ranging from
hundreds of milliseconds up to years. While Hebbian plasticity is believed to
play a pivotal role in biological memory, it has so far been analyzed mostly in
the context of pattern completion and unsupervised learning. Here, we propose
that Hebbian plasticity is fundamental for computations in biological neural
systems. We introduce a novel spiking neural network architecture that is
enriched by Hebbian synaptic plasticity. We show that Hebbian enrichment
renders spiking neural networks surprisingly versatile in terms of their
computational as well as learning capabilities. It improves their abilities for
out-of-distribution generalization, one-shot learning, cross-modal generative
association, language processing, and reward-based learning. As spiking neural
networks are the basis for energy-efficient neuromorphic hardware, this also
suggests that powerful cognitive neuromorphic systems can be build based on
this principle.
- Abstract(参考訳): メモリは、数百ミリ秒から数年に及ぶ膨大な時間スケールにわたる情報の保持を可能にする、生物学的ニューラルネットワークの重要なコンポーネントである。
ヘビアン可塑性は生体記憶において重要な役割を担っていると考えられているが、これまでは主にパターンの完成と教師なし学習の文脈で分析されてきた。
本稿では,生体神経系における計算の基盤としてヘビアン可塑性を提案する。
本稿では,ヘビーンのシナプス可塑性に富む新しいスパイクニューラルネットワークアーキテクチャを提案する。
ヘビーエンリッチメントは,その計算能力と学習能力の面で,ニューラルネットワークを驚くほど多用することを示した。
分散一般化、ワンショット学習、クロスモーダル生成結合、言語処理、報酬ベースの学習の能力を向上させる。
スパイクニューラルネットワークがエネルギー効率の良いニューロモルフィックハードウェアの基礎となるため、この原理に基づいて強力な認知ニューロモルフィックシステムを構築することもできる。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
スパイクニューラルネットワークは、脳に似たコンピューティングを実現する人工知能のコアの1つである。
本稿では,5つのニューロンモデルの強み,弱さ,適用性について要約し,5つのネットワークトポロジの特徴を解析する。
論文 参考訳(メタデータ) (2023-09-08T16:41:08Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Sequence learning in a spiking neuronal network with memristive synapses [0.0]
脳計算の中心にある中核的な概念は、シーケンス学習と予測である。
ニューロモルフィックハードウェアは、脳が情報を処理する方法をエミュレートし、ニューロンとシナプスを直接物理的基質にマッピングする。
シークエンス学習モデルにおける生物学的シナプスの代替としてReRAMデバイスを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2022-11-29T21:07:23Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。