論文の概要: A deep learning method for solving stochastic optimal control problems
driven by fully-coupled FBSDEs
- arxiv url: http://arxiv.org/abs/2204.05796v1
- Date: Tue, 12 Apr 2022 13:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-13 17:34:59.885572
- Title: A deep learning method for solving stochastic optimal control problems
driven by fully-coupled FBSDEs
- Title(参考訳): 完全結合fbsdによる確率的最適制御問題の深層学習法
- Authors: Shaolin Ji, Shige Peng, Ying Peng and Xichuan Zhang
- Abstract要約: 本稿では,完全結合前方微分方程式(FBSDEs,略してFBSDEs)によって駆動される高次元最適制御問題の,ディープラーニングによる数値解に着目した。
まず,この問題をStackelberg差分ゲーム(リーダ・フォロワー問題)に変換し,リーダーのコスト関数と追従者のコストがディープニューラルネットワークを介して最適化されるクロス最適化手法(COCO法)を開発する。
数値的な結果については,実用新案による投資消費問題の2つの例を計算し,両例が有効であることを示す。
- 参考スコア(独自算出の注目度): 0.2064612766965483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we mainly focus on the numerical solution of high-dimensional
stochastic optimal control problem driven by fully-coupled forward-backward
stochastic differential equations (FBSDEs in short) through deep learning. We
first transform the problem into a stochastic Stackelberg differential
game(leader-follower problem), then a cross-optimization method (CO method) is
developed where the leader's cost functional and the follower's cost functional
are optimized alternatively via deep neural networks. As for the numerical
results, we compute two examples of the investment-consumption problem solved
through stochastic recursive utility models, and the results of both examples
demonstrate the effectiveness of our proposed algorithm.
- Abstract(参考訳): 本稿では,完全結合型前方確率微分方程式(FBSDEs,略してFBSDEs)による高次元確率的最適制御問題の数値解に着目した。
まず,この問題を確率的なStackelberg差分ゲーム(リーダー-フォロワー問題)に変換し,より深いニューラルネットワークを用いて,リーダのコスト関数と追従者のコスト関数を最適化するクロス最適化法(CO法)を開発する。
数値計算では,確率的再帰的効用モデルによる投資消費問題の2つの例を計算し,その2つの例が提案アルゴリズムの有効性を示した。
関連論文リスト
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
我々は,現代のディープラーニングにおいて広く普及している一般的なメタ学習問題に対処する。
これらの問題は、しばしばBi-Level Optimizations (BLO)として定式化される。
我々は,与えられたBLO問題を,内部損失関数が滑らかな分布となり,外損失が内部分布に対する期待損失となるようなii最適化に変換することにより,新たな視点を導入する。
論文 参考訳(メタデータ) (2024-10-14T12:10:06Z) - Deep Learning Methods for S Shaped Utility Maximisation with a Random Reference Point [0.0]
深層学習法と双対解法を用いて問題を解くための数値解法を開発した。
深層学習法を用いて、原始問題と双対問題の両方に対して関連するハミルトン・ヤコビ・ベルマン方程式を解く。
完全市場と不完全市場の両方において、この非凹凸問題の解を、ベンチマークに依存するランダム関数である定式化ユーティリティの解と比較する。
論文 参考訳(メタデータ) (2024-10-07T22:07:59Z) - A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - DiffuSolve: Diffusion-based Solver for Non-convex Trajectory Optimization [9.28162057044835]
最適軌道局所は非線形および高次元力学系において計算コストが高い。
本稿では,非次元オプティマ問題に対するDiffuに基づく一般モデルを提案する。
また,新たな制約付き拡散モデルであるDiff+を提案する。
論文 参考訳(メタデータ) (2024-02-22T03:52:17Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Deep Learning for Constrained Utility Maximisation [0.0]
本稿では,ディープラーニングを用いた制御問題を解くための2つのアルゴリズムを提案する。
最初のアルゴリズムはハミルトン・ヤコビ・ベルマン方程式を通じてマルコフ問題を解く。
2つ目は、非マルコフ的問題を解くために双対法の全力を利用する。
論文 参考訳(メタデータ) (2020-08-26T18:40:57Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Solving stochastic optimal control problem via stochastic maximum
principle with deep learning method [0.2064612766965483]
新しい制御問題を解くために3つのアルゴリズムが提案されている。
この手法の重要な応用は、完全非線形PDEの一種に対応するサブ線形期待値を計算することである。
論文 参考訳(メタデータ) (2020-07-05T02:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。