論文の概要: STONet: A Neural-Operator-Driven Spatio-temporal Network
- arxiv url: http://arxiv.org/abs/2204.08414v1
- Date: Mon, 18 Apr 2022 17:20:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 17:00:01.353875
- Title: STONet: A Neural-Operator-Driven Spatio-temporal Network
- Title(参考訳): STONet: ニューラル演算駆動時空間ネットワーク
- Authors: Haitao Lin, Guojiang Zhao, Lirong Wu, Stan Z. Li
- Abstract要約: グラフベースのグラフ時間ニューラルネットワークは、不規則にサンプリングされた離散点間の空間依存性をモデル化するのに有効である。
本稿では,空間連続的な物理量の力学を規定するメカニズムを学習する,PDEのためのニューラル演算子に基づく時間的枠組みを提案する。
実験では,空間的連続的な物理量の予測におけるモデルの性能と,時間的不規則なデータの処理能力に優れていた。
- 参考スコア(独自算出の注目度): 38.5696882090282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based spatio-temporal neural networks are effective to model the
spatial dependency among discrete points sampled irregularly from unstructured
grids, thanks to the great expressiveness of graph neural networks. However,
these models are usually spatially-transductive -- only fitting the signals for
discrete spatial nodes fed in models but unable to generalize to `unseen'
spatial points with zero-shot. In comparison, for forecasting tasks on
continuous space such as temperature prediction on the earth's surface, the
\textit{spatially-inductive} property allows the model to generalize to any
point in the spatial domain, demonstrating models' ability to learn the
underlying mechanisms or physics laws of the systems, rather than simply fit
the signals. Besides, in temporal domains, \textit{irregularly-sampled} time
series, e.g. data with missing values, urge models to be temporally-continuous.
Motivated by the two issues, we propose a spatio-temporal framework based on
neural operators for PDEs, which learn the underlying mechanisms governing the
dynamics of spatially-continuous physical quantities. Experiments show our
model's improved performance on forecasting spatially-continuous physic
quantities, and its superior generalization to unseen spatial points and
ability to handle temporally-irregular data.
- Abstract(参考訳): グラフベース時空間ニューラルネットワークは,非構造格子から不規則にサンプリングされた離散点間の空間依存性をモデル化するのに有効である。
しかし、これらのモデルは一般に空間的に伝達的であり、モデルで供給される離散的な空間ノードの信号にのみ適合するが、ゼロショットの'アンセン'空間点に一般化できない。
対照的に、地球表面の温度予測のような連続的な空間上のタスクを予測するために、 \textit{spatially-inductive} 特性は、モデルが単に信号に合うのではなく、システムの基盤となるメカニズムや物理法則を学ぶ能力を示す空間領域の任意の点に一般化することができる。
さらに、時間領域では、値が不足しているデータのような \textit{irregularly-sampled} 時系列は、モデルに時間的連続性を持たせます。
これら2つの課題に触発され,空間連続的な物理量の力学を規定するメカニズムを学習するPDEのためのニューラル演算子に基づく時空間フレームワークを提案する。
実験により,空間的連続的な物理量予測におけるモデルの性能が向上し,非知覚的な空間的点に対する優れた一般化と時間的不規則なデータを扱う能力が示された。
関連論文リスト
- Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:59:51Z) - Continuous PDE Dynamics Forecasting with Implicit Neural Representations [24.460010868042758]
空間連続関数の連続時間ダイナミクスを用いたPDE流れに対する新しいデータ駆動型アプローチを提案する。
これは、Implicit Neural Representationsによる離散化とは無関係に空間外挿を埋め込むことによって達成される。
任意の空間的および時間的位置で外挿し、テスト時にスパースグリッドや不規則なデータを学習し、新しいグリッドや解像度に一般化する。
論文 参考訳(メタデータ) (2022-09-29T15:17:50Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
グラフニューラルネットワーク(GNN)は、しばしば予測アーキテクチャのコアコンポーネントである。
ほとんどの時間前GNNでは、計算複雑性はグラフ内のリンクの回数のシーケンスの長さの2乗係数までスケールする。
本稿では,時間的・空間的両方のダイナミックスを効率的に符号化するスケーラブルなアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-14T09:47:38Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Space-Time Graph Neural Networks [104.55175325870195]
本研究では、時空間グラフニューラルネットワーク(ST-GNN)を導入し、時間変動ネットワークデータの時空間トポロジを共同処理する。
解析の結果,システムのネットワークトポロジと時間進化の変動はST-GNNの性能に大きく影響しないことがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:08:44Z) - Spatial Aggregation and Temporal Convolution Networks for Real-time
Kriging [3.4386226615580107]
SATCNは、モデル仕様を必要とせずに、様々なデータセットに対してテンポラリグを実行する、普遍的で柔軟なフレームワークである。
我々は時間的畳み込みネットワークによってノードをキャプチャし、モデルがさまざまなサイズのデータに対処できるようにする。
我々は、交通や気候記録を含む3つの実世界のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-09-24T18:43:07Z) - Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting [22.421667339552467]
時空間予測は幅広い応用において大きな注目を集めており、交通流予測は標準的で典型的な例である。
既存の研究は通常、浅いグラフ畳み込みネットワーク(GNN)と時間的抽出モジュールを使用して、それぞれ空間的および時間的依存関係をモデル化する。
テンソル型常微分方程式(ODE)を用いて時空間ダイナミクスを捉える時空間グラフ正規微分方程式ネットワーク(STGODE)を提案する。
我々は,複数の実世界の交通データセット上でモデルを評価し,最先端のベースライン上で優れた性能を実現する。
論文 参考訳(メタデータ) (2021-06-24T11:48:45Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
交通流の空間的-時間的データ予測は複雑な空間的依存性と道路間の時間的パターンの動的傾向のために難しい課題である。
既存のフレームワークは通常、与えられた空間隣接グラフと、空間的および時間的相関をモデル化する洗練されたメカニズムを利用する。
本稿では,交通流予測のための空間時間融合グラフニューラルネットワーク(STFGNN)を提案する。
論文 参考訳(メタデータ) (2020-12-15T14:03:17Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。